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ABSTRACT

Pixel Based Note Taking through

Perceptual Structure Inference

Mitchell K. Harris
Department of Computer Science

Masters of Science

Knowledge workers need effective annotation tools to assimilate information.
Unfortunately many digital annotators are limited in the range of document that they accept.
Those that do accept many different documents do so by converting documents to images, thus
losing any awareness about the original content of the document. We introduce a digital note
taker that is both universal and content aware. By constructing a hierarchical context tree of
document images, the structure of a document is inferred from the image. This hierarchical
context tree is shown to be useful by demonstrating how it facilitates selection of document
elements, reflowing documents to accommodate inserted notes, and expanding the context of
links. PixelJot, and implementation of these ideas, demonstrates their feasibility.

Keywords: Annotation, perception, HCI
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INTRODUCTION

Knowledge workers gather and assimilate information. Since they represent an important and
growing portion of the work force, simplifying and improving their tasks is a worthwhile goal.

In past decades, their tools were paper, note cards, and white boards. More recently, physical
media has been succeeded by digital document annotation applications. A digital annotation tool
is a program that imports pre-existing documents and allows for gathering and aggregation of the
users observations on the document. Highlighting and creating comments are common tools in
annotators for gathering observations, while summaries, indexes, and searches are examples of
aggregation tools. While digital annotation applications have many advantages, their
inflexibility has limited their adoption. Many existing annotators are unable to universally work
with all kinds of documents. Those annotators that do universally import documents do so by
converting them to images. Once converted to pixels, these annotators are able to display the
documents but cannot manipulate them or understand their structure. The structure of a
document is entirely opaque to them. We introduce a method of making a digital document
annotator that is able to both universally import all kinds of documents and understand their
internal structure. Our implementation, shown in Figure 1, is called PixelJot. In the introduction
we discuss the nature of the universality versus structure awareness impasse, and how our

method claims to resolve it.
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Figure 1 PixelJot

Universality

Annotating a document means adding comments, highlights, cross references, and other such
notes on top of an existing document. This requires direct access to the source document.
Documents that people wish to annotate come in many formats, as witnessed by their many
extensions. Just a few are “.pdf”, “.doc”, “.docx”, “.odf”, “.txt”, “.rtf”, and “.xIs”. There are

many more formats and undoubtedly in the future more formats will be created.

Unfortunately, this plethora of document formats makes importing difficult for annotators. For

each additional format, the annotator must determine how to read and display it. This means that
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many annotators are limited to working only with a limited set of document types, locking out

many documents as sources.

Instead, we must have an annotator that is universal. A universal annotator is able to import all
kinds of documents, regardless of format, and lay them side by side each other for inter-
document cross referencing. Reading all kinds of document formats is a difficult problem. A
special adapter could be written for each different format, but this would not support future
formats, would take extensive expertise and special knowledge of the various formats, and may

be impossible for proprietary formats.

To achieve universality, some existing annotators use a clever work-around. Rather than
attempting to read all formats, they install a virtual printer and then “print” documents to their
application. This virtual printer converts documents to images, which are easily imported by the
annotator. All printable documents can be imported, allowing direct on-the-document note-

taking.

Content Aware

There is a trade off involved with converting documents to images. Documents have an internal
structure, storing where figures, paragraphs, and columns are. Images are entirely structureless.

This lack of structure means that an annotator that converts documents to images loses its ability

www.manaraa.com



to be aware of content of the document. Content awareness is when a document-to-image
converting annotator is aware of the content or structure of it. Failure to be content aware limits
an annotator’s ability to assist with annotation tasks. For example, assisting in selection by
snapping selection boxes to nearby words or paragraphs would require an annotator to be aware
were words and paragraphs are. We focus on four operations that are very difficult or not

possible on images, and thus are out of reach for non-content aware annotators. These are:

1. Selection
2. Layout
3. Context expansion

4. Synopsis pages

Selection

Selecting an element in a document is the first step for most annotation tasks. Highlighting a
region is an example of a task that requires having a selection region. Without a selection

technique, highlights would run outside of the text their intended for as in Figure 2.
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Figure 2 Highlights may become sloppy if the annotator is not content aware.

While a selection algorithm is necessary, selection of regions of images is a difficult problem.
Existing selection techniques such as the lasso, bounding box, min-graph cut, and intelligent
scissors are ill-suited for document based selection because, since they work on pixels, they are
unaware of lines, paragraphs, and columns. They may select only half of a character or shave off
an edge of a paragraph as seen in Figure 3. Instead document selection requires a technique that
is aware of document primitives such as the characters, lines, paragraphs, or columns. Take
Figure 3 and Figure 4 as an example. If a hasty user were to provide the selection rectangle
shown in Figure 3, a good content aware selecting algorithm would automatically snap to the

paragraph, the most likely element of the document that is being selected.
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Figure 3 A selection bounding box drawn by a user Figure 4 A good selection algorithm would snap the box

to select the paragraph

Unfortunately, because existing document image annotators are not content aware, they are
unable to determine where the elements of the document lie and assist with selection. This

operation is beyond the reach of non-content aware annotators.

Layout

Inserting comments into a tightly packed document can cause some readability issues. If the
comment won’t fit into the whitespace of a document, then either the comment would have to
over flow over the body of the text as in Figure 5, or it would have to be resized until it fits in the
whitespace. If the whitespace is small, the resized comment may become too small to be

readable.

Instead of these two unacceptable options, it would be better if the document could be
reformatted, flowing the paragraphs and columns to make room for the comment. Figure 5
demonstrates a rather lengthy comment that a user wishes to insert in the whitespace of a
paragraph. The comment does not fit, but if a layout algorithm were to be included, the

6
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comment could still be inserted and the paragraph below would be moved downwards to make

room for the comment as in Figure 6.

[This is an idea that | have
I there 3n easier way of doing this?

Computer S

ABSTRACT
Group meetings and other non-desk situations require
people be able to interact at a distance from a displd
surface. This paper describes a technique using a laser
pointer and a camera to accomplish just such interactions.
Calibration techniques are given to synchronize the display
and camera coordinates. A series of interactive techniques
are described for navigation and entry of numbers, times,
dates, text, enumerations and lists of items. The issues of
hand jitter, detection error, slow sampling and latency are
discussed in each of the interactive techniques.

Keywords
Laser pointer interaction, group interaction, camera-based
interaction.

INTRODUCTION

A very interesting setting for interactive computing is in a
meeting where the display is projected on the wall.
Projection of the large image allows all participants sitting

Laser Pointer Interaction

It does seem like thay did this pretty cheaply
Haven't WebCam's dropped in price since this paper
' giad tha this comment block will make it into this

‘ravis Nielsen
Young University, Prove, UT
s.byu.edu

equipment consists of a computer attached to a projector
and a camera to detect the laser pointer position. We used a
standard 1024 x 768 projector connected to a laptop PC.
the camera we used a $500 WebCam that can deliver
to 7 frames per second over TCP/IP. This camera
ection is very slow, but adequate for our initial tests.

In addition to meeting situations, this technique is useful
wherever the user is in a situation for which a large
projected display 1s possible, but a local personal display
would be awkward. Examples include a repair shop with
service information displayed on the wall, a laboratory
where instrument controls are displayed on the wall, or as
an alternative to the traditional television IR remote. In
situations where the hands are occupied, the laser could be
mounted on the back of a half-finger glove with the
actuator switch on the side of the glove. This would require
use of the hand to point, but would eliminate searching for
and grabbing the pointer

Figure 5 The comment in blue needs to be inserted at the arrow point

ABSTRACT

Group meetings and other non-desk situations reguire that
people be able to interact al a distance [rom a display
surface. This paper describes a technique using a laser
pointer and a camera to accomplish just such interactions.
Calibration techniques are given to synchronize the display
and camera coordinates. A series of interactive techniques
are described for navigation and entry of numbers, times,
dates, text, enumerations and lists of items. The issues of
hand jitter, detection error, slow sampling and latency are
discussed in each of the inferactive techniques.

Keywords
Laser pointer interaction, group interaction, camera-based
interaction.

INTRODUCTION

A very interesting setting for interactive computing is in a
meeting where the display is projected on the wall.
Projection of the large image allows all participants sitting
in their chairs to see the information under discussion. This
provides a shared environment that can ground the
discussion and provides an equal discussion point for
everyone. However, 1f the information 1s interactive, only

[N "R AU FORPUNS SR, IR S T, E S ——

Laser Pointer Interaction

Dan R. Olsen Jr. and Travis Nielsen
Computer Science Department, Brigham Young University, Provo, UT
{olsen, nielsent }@cs.byu.edu

equipment consists of a computer attached to a projector
and a camera to detect the laser pointer position. We used a
standard 1024 x 768 projector connected to a laptop PC.
For the camera we used a $300 WebCam that can deliver
up to 7 frames per second over TCP/IP. This camera
connection is very slow, but adequate for our initial tests.

[This i an idea that | hawe

Iz there an easier uay of doing this?
It does seem like thay did this pretty cheaply

Hawen' iish Cam's dropped in price since this paper
' glad that this comment block will make it into this

In addition to meeting situations, this technique is useful
wherever the user is in a situation for which a large
projected display 1s possible, but a local personal display
would be awkward. Examples include a repair shop with
service information displayed on the wall, a laboratory
where instrument controls are displayed on the wall, or as
an alternative to the traditional television IR remote. In
situations where the hands are occupied, the laser could be
mounted on the back of a half-finger glove with the
actuator switch on the side of the glove. This would require
use of the hand to point, but would eliminate searching for
and grabbing the pointer.

Figure 6 The paragraphs flow to make room for the inserted comment
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An algorithm that reflows a document must know what each element of the document is and how
they relate to each other. For example, in the case of inserting a comment that we just
introduced, the layout algorithm needed to know the bounds of each of the paragraphs below the
insertion point. If this paper has two columns the layout algorithm would also need to know to
which column each paragraph belonged, so as to move the elements of one column but ignore
the other. Since most document image annotators have only images of documents, but no

structure about them (that is they are not content aware), most annotators are unable to reflow

documents.
Annotation pages and Visual links

When reading a single document, most readers want to put annotations directly on the source
document. When reading several documents, a reader may want to pool common ideas together
on a separate page. PixelJot supports annotation pages. An annotation page is essentially a
blank slate, ready for users to insert comments or drag in visual links from source documents.

Figure 7 shows an annotation page with several comments and visual links.

|'l‘h.is work is distinct from other camera-based intcrac’rionl

| wander ifthis new camera technigue could give rise
to a new paradigm

| few of these integrate well

|Integrati0n of these technigues could be the key issue |

The top priority applications for an HCI research focus are
medicine, transportation, electronic commerce, education
and training, and national security. In each of these domains,
HCI research is needed 1o develop improved design methods
and metrics, improved tocls for building usable, consistent,
and reliable user interfaces, software architectures for the
next generation of user interfuces, and improved methods of
delivering ontine assistance, Usable interfaces must be pro-
vided to everyone: diverse users with differing cognitive,
percepual, learning and physical abilities, on a wide-range
of hardwarefsofiware plalforms, with varying network
capacities.

Click here to add a note, or drag clippings here

www.manaraa.com



| Figure 7 An annotation page with several notes (blue background) and clippings. |

A visual link is a cross reference or link between or within documents that uses a visual portal
into the target document rather than a text tag to visualize itself. To add a new visual link, the

reader selects the area on a source document they wish to add (Figure 8), drags it to where they

want to be placed in the annotation page (Figure 9).

AL AT T il lo AL A TS L ey TERA T LT o el W AL TAL I W ws

n uses several tracking devices atlached to va
¥ to collect raw data about body movement. The
erted into body-relative information and sent

nﬁn]t'rn'n'l- ranIrarto +|-'|n ';111\111' tn a h;ﬂhﬂ‘l"_-lﬂirﬂ-l rh:n

Figure 8 A region is selected

The previously mentioned layout algorithm handles making room for the new visual link. In this

case it shifts the text downward (Figure 9).
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|'l‘bis. work is distinet from other camera-based interaction

| wonder ifthis new camara technigue could give rise
to @ new paradigm

| few of these integrate well

|Integrati0n of these techniques could be the key issue |

The top priority applicalions for an HCI research focus are
medicine, transportation, electronic commerce, education
and ttaining, and national security. In each of these domains,
HCI research is needed W develep improved design methods
and metrics, improved tools for building usable, consistent,
and reliable vser interfaces, software architectures for the
nexl generation of user interfuces, and improved methods of
delivering onling assistanes, Usable interfaces must be pro-
vided to everyone: diverse users with differing cognitive,
perceptual, learning and physical abilities, on a wide-range
of hardware/sofiware plalforms, wilh varying nelwork
capacities.

colleet raw data about body movement.

Click here to add a note, or drag clippings here

Figure 9 Completion of the drag and drop inserts the selected area as a visual link.

Double clicking on any of these links navigates back to the referenced document.

Context expansion

SPICIE framework

Figure 10 A visual link to a phrase.

PixelJot allows for an interesting operation on visual links called context expansion. This is one
of the four operations that are not possible for non-content aware annotators. Context expansion
means that rather than just navigating to an original document by clicking on a link, a user may

expand the link to view the target’s context. For example, clicking once on the link shown in
10
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Figure 10 would expand the visual portal to show the entire line of text (Figure 11), clicking
again would reveal the paragraph (Figure 12), and a third click would expand the visual portal to
show the column (Figure 13). Subsequent clicks would show both of the columns together and
then the entire page. Once expanded to the entire page, an additional click cycles the link back

to its original portal.

This paper introduces the BPICIE [ramewoark| for annexing

Figure 11 The visual link to a phrase shown in Figure 10 is expanded to show the entire line. The original phrase is
selected with brown boxes.

ABSTRACT

This paper introduces the GPICIE] [famework] for annexing
display servers and sharing content on available screens.
SPICIE allows a user carrying a portable dewice, such as a
laptop or tablet, to annex additional screen space for her
device. She then selects windows on her device to share
with the annexed screens. In particular, overlapping
windows on her personal device may be spread out (de-
multiplexed) so that they do not overlap on the annexed
screens. SPICIE protects user pnivacy by ensunng that only
pixels pgenerated by explicitly shared windows are
transmitted to the display server Nultiple users may also
sinultaneously annex the screens fo share content.

Figure 12 The line is expanded to show the paragraph.

11
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ABSTRACT

This paper introduces the SPICLE ramewak for annexing
display servers and sharing content on available screens.
SPICIE allows a user carrying a portable device, such as a
laptop or tahlet, to annex additional screen space for her
device. She then selects windows on her dewice to share
with the annexed screens. [n particular, overlapping
windows on her personal device may be spread out (de-
multiplexed) so that they do not overlap on the annexed
screens. SPICIE protects user privacy by ensuring that only
pizels generated by explicitly shared windows are
transttted to the display server Multiple users may also
sumultaneously annex the screens o share content.

Author Keywords
de-multip lexx pixels, annex screen, protect privacy

ACM Cassification Keywords
H5.m Information interfaces and presentation (e.g, HCI):
Miscellaneous.

INTRODUCTION

People are mereasingly nomadic, and must manage large
quantities of mformation In particular, people need ther
personal information with them wherever they are An
effective technique for keeping information availahle is to
carry that mformation with the vser on a portable computer
such as a laptop or tablet. These personal devices have
portable form factors, bul have limited screen space
Consequently, users are challenged to manage the
ncreasing amount of information on a restricted screen
space

Most laptops and tablets have a Video Graphics Array
(VG A) connector that can be used to add a single screen. &
VG A connector increases the number of pixels available,
but limits users to one additional screen and to the number
of pixels on that screen that both the personal device and

Figure 13 The paragraph is expanded to show the column.

This context expansion is impossible for non-content aware annotators because they have no way
of finding what the appropriate context of an element is. Given a bounding box on an image, a
non-content aware annotator would not know how far to expand the bounding box to capture the

next level up of context.

Synopsis pages

The last operation that is impossible for non-content aware annotators is generating sophisticated
synopses of annotated documents. A synopsis page is any kind of condensation of an entire
document. An index or summary are a kind of synopsis. Synopsis are based on tags or

comments. While annotating documents, a user will often wish to select an element and tag it. A
12
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tag associates a region with a string for later search. Figure 14 demonstrates what a tag looks

like in PixelJot.

Uy do SIdUl CIIVIIUVIOIICIIL UL Wdll SIUVUIIU U

ussmnromdes an equal discussion point ﬁ
yone. on

of the participants has control of the change

Figure 14 A phrase is tagged with the string “key idea”.

There are three kinds of synopses in PixelJot.

1. Index Page
2. Search Page

3. Summary page

To show an example of each of these pages, we’ll need a sample annotated document. Figure 15

provides a document with several tags spread throughout.

13
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ABSTRACT

This paper introduces the SPICIE framework

display servers and slnring content on available screens.
SPICIE allows a user carrying a portable device, such as a
laptop or tablet, to annex additional screen space for her
desnce She then selects windows on her device to share
with the annexed screens. In particular, overlapping
windows on her personal device may be spread out (de-
multiplexed) so that they do not overlap on the annexed
screens. SPICIE protects user privacy by ensuring that only
pzels generated by explicitly shared windows are
transmitted to the display server. Multiple users may also
simultaneously annex the screens to share content.
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screen support.

Desktop machines, however, can support extra gaphics
hardware, allowing users to geatly mcrease the screen
space available for applications. Unfortunately, deskiop
machines are not very mobile, so personal devices are still
Immited to a single additional screen

Ins “hasies g single screen limit, a user should be able
to key idea 1o meet her need for space This paper
introduces es for Interactive Computing In Education
(SPICIE): a wireless screen annexation protocol that allou
users to utdize multiple screens via a nm-.
overcoming the cable hbmitations. SPICTE Taciimates ge-
raultiplexing pixels, which allows users to spread out
windows from their personal device to the atlached screens.
Spreading these windows provides users context while
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Figure 15 An example document with various tags.

An index is a page composed of a visual link to each tag in the document in sorted in

alphabetical order of the tag string. Figure 16 shows an index page based on the document from

Figure 15.
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Index
KEY IDEA,

ISpaj:es for Interactive Computing In Education (SPICIE): l

| SPICIE framework ]
TITILE

De-multiplexing Pixels: Wirelessly Expanding Portable
Screen Space

UNIMPORTANT

I de- waultiplexing  pixels

Figure 16 An index page generated based on Figure 15.

A search page allows a user to search for tags within a document, folder, or all documents for a
given string. Figure 17 demonstrates a search of the document in Figure 15 for the string “Key

Idea”.

KEY IDEA

mpaces for Interactive Computing In Education
(EPICIEY:

SPICIE framewsorls

Figure 17 A search result page searching for the string “Key Idea”

A summary page lists visual links to tags, highlights, and comments of a document in order of

appearance in the document.
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Tag: titls

De-multiplexing Pixels: Wirelessly Expanding Portable
Screen Space

Tag: keyidea
SPICIE framework

Tag: keyidea

Spaces for Interactive Computing In Education (EPICIE):

Tag: Uinimportant

de- muliiplexing  pixels

Figure 18 A summary page for the document in Figure 15.

Need for content awareness in synopsis pages

Synopses are impossible for a non-content aware annotator to use. The most obvious reason is
that synopses depend on tagging and visual links. Tagging requires a good selection algorithm,
which, as discussed earlier, requires content awareness. Visual links require content awareness
to make context expansion work. Thus an annotator that is not content aware would be unable to

offer synopsis pages.

Summaries have a special and unique need for content awareness. Summaries list tags,
highlights, and comments in a document in the order that they appear. Ordering annotations is
not possible without understanding the flow order of a document. Look again at Figure 15 and
Figure 18. Notice that this summary listed the tag in the left column before the tags in the right,
and the tag of the title before all of these. To achieve this, the algorithm that created the
summary needs to understand the flow order, and therefore the structure, of a document.

Creating synopsis pages, especially the summary page, requires content awareness.
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Selection, layout, context expansion, and synopsis pages are all useful operations that are out of
reach for annotators that store documents only as images. This introduces a tradeoff. Either the
annotator can universally import documents by converting them to images, and thus lose the
power to do these four operations, or it may attempt some other format-specific method of

importing, and lose its ability to be universal.

Context

Let us suppose that there is a system for universally importing documents and getting structure
with them. What kind of structure is needed? Clearly in order to support selection the structure
is going to need to be aware of the fundamental elements of a document, such as the characters,
lines, paragraphs, and columns. In order to support context expansion, the structure needs to
know the contextual hierarchy of a document. To expand the link in Figure 10 to the scope
shown in Figure 11 a context expansion algorithm needs to know the line to which the phrase
belongs. To expand again to Figure 12 it would need to know the paragraph to which the line

belongs.

In fact, a closer look at all four of these operations shows that they all need to know contextual
hierarchy. Layout requires knowing the column to which a paragraph belongs if it is to move
only the paragraphs within an affected column. Again, this requires knowing the hierarchy of the

document. For the synopsis page algorithm to create summaries it needs to know the flow
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order of the page. That requires knowing how the document is organized, and how each element
is ordered compared to another. That, in short, is a kind of contextual hierarchy. In order to
make these four operations possible, an annotator needs to know the contextual hierarchy of a

document.

Thesis Statement

We introduce a method that allows annotators to be both universal and content aware. By
importing documents as images this system is universal. We introduce a document
understanding algorithm for segmenting the document image into individual atomic pieces.
Segmentation of the document results in a hierarchical context tree (HCT) which is a data
structure that stores the segmentation of elements of a document, and their relationship to each
other. The HCT allows for content aware operations such as selection, layout, context
expansion, and synopsis pages while still being a universal annotator. We have created PixelJot,
an implementation these ideas, to demonstrate the feasibility of creating an HCT and the tools

that use it.
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PRIOR WORK

There are many commercial note taking applications [1-4, 6]. Most allow for text input, arbitrary
attachments, tagging pages, hyperlinks between pages or to websites, and hierarchal grouping of
notes into notebooks, sections, tabs, and pages. However, most of these note taking applications
are not good annotators. In order to understand why, we will need to define the difference
between the two. Like an annotator, a note taker is a tool that allows for gathering and
aggregation of observations. However, unlike an annotator, a note taker does not import the
object that is the subject of the observations; it simply records the observation apart from the
subject. While this frees a note taker from the complexities of importing documents, it also is
the cause of their most fundamental flaw. That is that note takers lead to a high degree of
duplication, the burden of which is placed on the user. Note takers force the user to first create a
“pointer” to the content they wish to annotate before recording observations. Typically this
“pointer” is a recreation of part of the document, such as a brief description. Take for example
Zoho notebook. To takes notes on a paper, the user in Figure 19 first had to write what the paper
was about (the first paragraph, which is the “pointer”), then write his observation in the second
paragraph. Obviously this is tedious and inefficient. Because annotators import documents and
allow for annotation directly on top of the document, this eliminates inefficiency by not forcing

users to recreate the elements they wish to annotate.
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Figure 19 Zoho notebook is not suited for annotating documents

All of the commercial applications the author has encountered do little to nothing to be content

aware. Images are often entirely immutable. A representative example of these commercial

annotators is Evernote [1]. As seen in Figure 20, Evernote has embedded a PDF document in the

top page, but is unable to select its text or interact with its content in anyway. In the lower page

of Figure 20, Evernote has imported a spreadsheet as an image. This image is not editable

beyond basic image processing operations such as contrast and brightness levels. Once in image

form, the content and context are inaccessible. OneNote [4] does offer limited interactions with

images such as search indexing via OCR and digital inking over the top. While OCR implies a

slight understanding of the content of images because it can find the words, it is agnostic to the

context of the words within the document.
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Figure 20 Evernote handles non-text content by converting it to images.

The research community has also offered several solutions to the limitations of annotators.
XLibris [14] is a system for annotating digital documents as if they were paper. It is meant to be
used on a tablet device where the user writes with freeform digital ink annotations to mark over
images of documents. Xlibris is able to annotate nearly any kind of document because of its
image representation. XLibris introduces clippings as a visual cutout of sections of a document.
These clippings are a precursor to visual links. XLibris will auto-generate clippings (as seen in
Figure 21) for each document by finding the bounding boxes of annotations and extending them
across the width of the page. Clippings are thus always extended to the full width of the paper;
causing the bounding box to extend beyond their column in multi-column documents, capturing
content irrelevant to the annotation (see Figure 22). Clippings are added to the beginning of
documents as a summary of annotations. Clicking on a clipping will jump the XLibris reader to

that part of the document. XLibris has no support for being aware of words, lines, paragraphs, or
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columns. Clipping pages are not editable documents themselves and may not be generated by

users for any purpose besides a pre-document summary.
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Figure 21 XLibris allows for clippings as visual summaries of documents. Image as provided by XLibris.
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ABSTRACT
Group meetings and other non-desk situations require that
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Calibration techniques are given to synchronize the display
and camera coordinates. A series of interactive techniques
are described for navigation and entry of numbers, times,
dates, text, enumerations and lists of items. The issues of
hand jitter, detection error, slow sampling and latency are
discussed in each of the interactive techniques.
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Figure 22 In XLibris, an annotation like the red circle will project a clipping across the entire page. The green box
would be the resultant clipping.

ScanScribe [13] is another note taking application made by the research community. ScanScribe
is intended primarily for sketches, whiteboard images, and scribbled text. ScanScribe only
accepts images and has no method of converting documents into images. Users must take screen
shots, save them to file, and open them with ScanScribe. ScanScribe’s main contribution is that

it is content aware, even better, it is able to determine a limited degree of context for elements in
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images. ScanScribe thresholds and segments documents upon import and discovers connected
components. ScanScribe will then attempt to group connected components to assist selection.
For example, clicking on an entry in the table in Figure 23 selects a single digit. Subsequent
clicks select the entire entry (as shown) then the entire table. If the naturally inferred groupings
are not sufficient, ScanScribe will learn groupings by users’ explicit selections. Many natural
groupings are not discovered by the automatic grouper. ScanScribe’s context discovery iS
optimized for informal sketch-like note taking rather than document annotation, and thus
performs very poorly on images of documents. It does not understand that documents are
composed of characters, words, lines, paragraphs, columns, etc. ScanScribe will normally
successfully group characters into words, but it never groups words into lines, lines into

paragraphs, or paragraphs into columns. It is thus fundamentally limited when working with

documents.
B PARC ScanScribe  Document2 g@g|
File Edit ©Options  ‘Window  Help
Freeform Draw Text Fit Zoom (1.0 w SansSerif w36
1 ~
H
444 0.26 040 1246 187104
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474 0.26 040 12.36 1871.2¢
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< >
420, 113
Figure 23 ScanScribe infers natural groupings of connected components.

ScreenCrayons [12] is an annotator that takes screen shots of the desktop and allows for marking

these images with highlights, underlines, circles, and margin bars. ScreenCrayons is universally
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able to work with any application or document because it imports documents and applications as
images. It does not provide for linking documents, but, like XLibris, does provide a method of
summarizing documents using clippings of annotations. ScreenCrayons only allows for
interacting with images in the form of inking marks or typed tags. However, ScreenCrayons is
somewhat content aware because it examines underlying images to assist selection and
highlighting. When users use ink or selection, the document image is examined and the ink or
selection is adjusted to snap to elements of the document. The context of these elements is never
infered so ScreenCrayons cannot expand links (or clippings in the case of ScreenCrayons) or re-
layout pages. We will use the whitespace identification algorithm found in ScreenCrayons in our

work.

XIEROX operafes a privaie long-disfance fele-
pbone system called Iofelnef. Mbe nefword con-
sisfs of) I2 infesconnected AR fefephone swifich-

Figure 24 Image Emacs segments individual characters.

Image Emacs [7] is an image based text editor that works entirely on images of documents. Itis
not a note taking application, but it does demonstrate novel interaction on document images.
When a document is loaded by Image Emacs, it will segment the document into columns, lines
and characters. As seen in Figure 24 the recognition each character has been surrounded by a
tight bounding box. Image Emacs allows text editing operations such as copy, paste, typing and
reflowing by moving or replicating images of characters within the document. It never uses
OCR, but is able to function on images of documents almost as easily as Microsoft Word [5]

does on “.docx” files. This reflowing demonstrates a high degree of content awareness in
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documents. However, ImageEmacs is not an annotator. Instead it is an editing and authoring
tool. Its purpose is not to gather and aggregate observations on a document, but rather to open an

existing document and modify it.

A similar system to ImageEmacs is Paper to PDA [8] which converts documents into a series of
word-sized images and then embeds the images in an HTML document. The result is an HTML

document that flows to match display devices of any size.

UpLib [9] is a digital library that stores documents in many different “projections”. Some of
these are an image of the document, OCR text, or metadata. The published work is unclear about
the granularity of linking or the degree of content awareness of this solution. The document
capture system seems robust enough to at least partially capture arbitrary documents, but it is

unclear if it will capture applications.

The paper “Hierarchical Representation of Optically Scanned Documents” [10] is a founding
work in document understanding using recursive cutting. Recursive cutting repeatedly divides a
document into smaller and smaller chunks by slicing along whitespace areas. The smaller
chunks are sliced again and again until the document is indivisible. Their system is optimized
for optically scanned documents, and includes cuts that are not axis aligned. While a precursor
to our own context inference system, this work makes no attempt to create a structure suitable for
note taking. Often its document representation varies from how we, as humans, would

hierarchically segment a document. While it isolates each of the pieces of a document, it does
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not stack them the way we would by putting words as members of lines and lines as members of

paragraphs.

Thus none of the existing annotators adequately interpret document content to support
annotation. Most do not discover the context of document elements at all, and those that attempt
to work poorly with documents, being more specialized for ink style notes. What is needed is an
annotator that can universally import all kinds of documents, and then be sufficiently content
aware to discover the context of document elements. This annotator should be specially

designed to support annotations tasks.
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PIXELJOT

Our solution to the content awareness issue is called PixelJot. It is able to be both universal and
content aware. By being universal we can annotate any document, regardless of the file format
of the source file. Because it is content aware, it can understand and manipulate the internal
elements of documents. For example, PixelJot can use this content awareness to assist in
selection by snapping selection rectangles to nearby elements in the document. PixelJot can
insert comments or visual links into a document and reflow lines, paragraphs, and columns to
accommodate the insertion. PixelJot can expand the scope of visual links to show surrounding
context. Additionally PixelJot can create synopsis pages that summarize the contents of a
document respecting the document flow order. This chapter introduces the core components
that makes our solution work, thus enabling selection, layout, context expansion, and synopsis

pages. Subsequent chapters will expound on each of these core components.

PixelJot uses the previously introduced trick of installing a virtual printer driver and printing
documents to a series of images. This step makes PixelJot universal. Importing documents as
images introduces a memory versus resolution tradeoff, which the Importing chapter explains

and resolves.

Becoming content aware is a much more difficult issue. Recall that the goal is to obtain a
contextual hierarchy of a document, but all that is available is the image of the document.

PixelJot uses perceptual clues to mine out contextual structure from images of documents. We
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call this dividing of the document segmentation. The Segmentation chapter introduces the
concept of a hierarchical context tree (HCT), how it can be used to find the contextual hierarchy

of a document, and how it is constructed.

Once the document image is segmented and an HCT is created, our four key operations become
possible, namely: layout, selection, context expansion, and synopsis pages. The Layout chapter
discusses how PixelJot is able to use an HCT to reflow documents when accommodating
insertions of notes. The Selection chapter introduces a selection algorithm that uses an HCT for
snapping user selection bounding boxes to nearby elements of a document, therefore assisting in
selection. It also introduces a selection technique that accepts highlighter-like strokes as input.
The Visual Links chapter formalizes the concept of visual links first encountered in the
introduction, and then pioneers an algorithm for context expansion of links using the HCT as a
guide. The Synopsis Pages chapter further explores how the index, search, and summary pages

are generated.
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IMPORTING

PixelJot is able to universally import all kinds of documents by using a special printer driver.
This virtual printer driver, created by Code-Industry[2], allows users to “print” their document to
images, which will then be imported by PixelJot. This is an established method for note-takers
to import arbitrary documents employed by applications such as Microsoft OneNote [4].
Converting documents to images introduces a major memory constraint. The virtual printer we
use allows for four quality settings: 100x100, 200x200, 300x300 and 600x600 dots per inch
(DPI). Of course more DPI provides greater quality, but it also consumes significantly more
memory. The table in Figure 25 shows the amount of memory necessary for each of these

resolution settings.

Pixels Width Pixel Height Total Pixels MB per Image

850 1100 935,000 3.6
200 x 200 1700 2200 3,740,000 143
300 x 300 2550 3300 8,415,000 32.1
600 x 600 5100 6600 33,660,000 128.4

Figure 25 Table describing memory requirements of images

These values are for a single standard 8.5”x11” page, but many documents contain several pages.
For example, a research conference paper can be about 10 pages long and thus at 600x600 DPI it
will require 1284 MB to hold in memory. A journal article of 40 pages could take as much as

5.1 GB at 600x600 DPI. Memory is clearly a constraining factor.
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However, quality of the image must be balanced as well. The table in Figure 26 shows a phrase
rasterized at various levels of quality. By looking very closely at the 100 x 100 DPI you may see
some blockiness. This blockiness almost entirely disappears at the 200 x 200 DPI level and

above.

Sample Text DPI

This paper 100 x 100
This paper 200 x 200
This paper 300 x 300
This paper 600 x 600

Figure 26 Visual results of various printing resolutions.

PixelJot uses the 200 x 200 DPI resolution setting.
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SEGMENTATION

Converting documents into images allows PixelJot to universally import any kind of document.
However, this comes at the price of “flattening” documents into pixels. Once projected to pixels,
the structure of the document is lost. Content aware annotators need structure to make some
features work such as reflowing documents and context expansion of links. The immediate

questions are what kind of structure is needed and how can we get it?
Contextual Structure

The level of structure that PixelJot needs is to know what the various pieces of a document are,
and how the pieces relate to each other. It needs to know how the pieces combine together to
compose other larger pieces. For example, suppose a user selects a portion of a document, then
drags it to another document thus making a visual link similar to that seen in Figure 27. Clicking
on the link once will expand the link to show not just the word, but also the entire line as shown
in Figure 28. Another click would expand the line to show the entire paragraph as in Figure 29.
To do this PixelJot needs to know several things. First, it needs to know that the word is an
atomic, selectable piece of the document. Second, it needs to know that this particular word
belongs to the line shown in Figure 28. Finally, it needs to know that the line of Figure 28

belongs to the paragraph shown in Figure 29.

information I

Figure 27

effective technique for keeping informatior] available 15 to

Figure 28
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People are increasingly nomadic, and must manage large
quantities of information. In particular, people need their
personal information with them wherever they are. An
effective technique for keeping intormation available 1s to
carry that information with the user on a portable computer
such as a laptop or tablet. These personal devices have
portable form factors, but have limited screen space.
Consequently, users are challenged to manage the
increasing amount of information on a restricted screen

Figure 29

Note that PixelJot does not need to identify each piece. To expand context from a line to the
paragraph it is not necessary to know that one is a line and the other a paragraph, just that one
belongs to another. This is called the contextual structure. PixelJot stores this context in a data
structure called a hierarchical context tree (HCT). An HCT is a tree whose root is the entire
document, and leaves are the atomic and most basic pieces of the document: the individual
characters or figures. Each level in-between represents a grouping of these basic pieces. Let’s
look at the document in Figure 31 with its corresponding HCT in Figure 30. Regions in Figure
31 have been colored to match their corresponding nodes in Figure 30. The root of this tree is

the entire document.

The document is composed of four margins (shown in green) and the document body. The
document body is composed of the title section, text body, and a gutter (shown in orange) which
divides the title and text body. Further segmentation of the text body reveals a layer that

separates the columns and another layer for separating the paragraphs. The paragraphs are
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broken into lines, which are broken into words. While not shown in this tree, the words are
divided into characters. This HCT allows for each element of a document to be placed in context

of its neighbors.

Figure 30 The hierarchal context tree segmented from the document in Figure 31. The nodes are colored
equivalently to their corresponding region.
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With a standardized widget set, developers ca

Figure 31 A paper with some of the regions separated by various colors

Getting Contextual Structure

The next issue is how to create an HCT from images. Images, in and of themselves, have no
structure whatsoever. However, by simply glancing at a document we can see some clues. A
human is able to look at a document and determine where the paragraphs are or to which
paragraph a line belongs. This is because documents are prepared for human consumption, and
thus contain visual clues to the human perceptual system about its structure. By utilizing
perceptual cues, the contextual structure of a document may be determined. Dividing an image

of a document up into its parts to determine structure is called segmentation.

The perceptual cue that we utilize in segmentation is whitespace. The human eye naturally
divides up regions by the amount of whitespace separating various elements. Take for example

Figure 32. While looking at this pattern of circles our brain groups them into various levels.
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Rather than seeing sixty-four independent circles, we see the circles in tight groups of four, then

more loose groups of four, etc.

Figure 32 Our brain naturally groups these circles on various levels.

The amount of whitespace between each grouping of circles gives clues to our brain on how to
divide the circles. Note that the background need not even be white. Any color will do as long

as it stands in strong contrast to the color of the circles and is uniform throughout.

Just as our brain groups these circles based on the amount of whitespace between them,

documents use whitespace to denote separations between elements. Take for example

Figure 33. The whitespaces between the lines designate each line as a separate entity. If the
whitespace were removed, as in Figure 34, then the paragraph becomes unreadable. PixelJot

uses this whitespace to inform its segmentation.
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Figure 33 The lines of a paragraph are separated by whitespace. | Figure 34 Without whitespace between lines the
text becomes unreadable.

PixelJot segments documents into an HCT by recursively using cuts. A cut is an algorithm that
slices along whitespace to divide the document up into smaller pieces. Each smaller part is then
cut up again, and those divided regions are cut yet again, so on and so forth. The recursive
cutting continues until the document is divided into small atomic pieces with no more whitespace
that affords slicing. We introduce two kinds of cutting algorithms: the crop cut and the grid cut.

Intuitively the crop cut works by slicing away whitespace around objects. In Figure 35 this

results in slicing away the margins of the logo and thus isolating the BYU lettering.

BYU BYU

BRIGHAM YOUNG BRIGHAM YOUNG
UNIVERSITY UNIVERSITY

Figure 35 A crop cut before and after.

Where the crop cut is designed for isolating objects, the grid cut is designed for dividing objects
up into smaller pieces. As seen in Figure 36, the grid cut slices along the whitespace between
objects, generating a grid of “cells” or smaller pieces.
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444 025 0.40 1246 1571.04 444 0.26 0.40 1246 187104
450 26 040 12.54 1871.13 =150 026 040 [FE] 187113
461 026 0.40 13.03 1571.11 461 0.26 040 13.0 187121
474 025 0.40 12.5% 1571.29 104 0.8 0.0 1208 1571.29
436 026 0.40 1227 1371.38 136 026 040 1227 187138
482 026 0.40 12.08 1871.46 452 0.26 0.40 1208 1871.46
473 26 0.40 12.08 1371.54 473 0.26 0.40 12.08 1871.54
Figure 36 A table Figure 37 The table is divided by a single grid cut
using 4 vertical and 6 horizontal slices.

Notice that the HCT in Figure 30 can be created by applying these cuts at each level of
segmenting Figure 31. First, the entire document is separated into four margins and the
document body using a crop cut. Then the grid cut divides the document into the title section
and the text body. If we examine the right branch of this tree we would see that a grid cut
divides the document again into the left column and the right column. Cuts can be continually
applied to generate the remainder of the HCT. Recursively applying both the crop cut and the

grid cut is how PixelJot creates a HCT from an image.

Segmentation needs three separate algorithms:

1. An algorithm for quickly finding whitespace in an image.

2. Acrop cut algorithm.

3. Agrid cut algorithm.
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Quickly Finding Whitespace

Quickly finding whitespace in images is a problem that has been previously addressed by
ScreenCrayons [12]. ScreenCrayons introduced the continuity map, a data structure that, once
built, allows for constant time determination of the size of uniform areas. Continuity maps are
similar to integral images, except that values reflect the count of the number of pixels in a given
direction (typically to the left or to the top) since a significant difference occurs. PixelJot uses a
horizontal continuity map that counts from left to right, and a vertical continuity map that counts

from top to bottom. The formal definition of a vertical continuity map is in Figure 38

1. ifpixel(x,y)is similar to pixel(x,y-1)

2 continuity(x,y) = continuity(x,y-1)+1
3. else

4 continuity(x,y) =1

Figure 38 Definition of a vertical continuity map

Figure 39 demonstrates an image with its vertical continuity map laid on top.
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Figure 39 A vertical continuity map laid over an image of the phrase “Type”.

The numbers on each column count upward until a major change appears, at which point the

count starts over. This divides each column into runs, or continuous areas or similar pixels. The

run in the first column is full length because it stretches across the entire map. Column four has

three separate runs.

The segmentation algorithms we introduce make two different queries against continuity maps.

The first query is GetContinuityAt(x,y). This simply returns the value of the continuity map at a

given location and takes O (1) time. For example, in Figure 39 GetContinuityAt(7,7) returns

four.
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The second query is GetRunEnd(x,y). This returns the location in the row or column of the last
pixel belonging to the same run as the location passed in. For example in Figure 39
GetRunENnd(7,7) returns 12, the last location in the column that belongs to the same run as
location (7,7). This value is found using a binary search algorithm. Binary search requires
having an indicator function that determines if the value being searched for lies before or after a
given queried location. Fortunately, there is such an indicator. Since continuity maps
increments once per pixel and restart count when a break is encountered, then it is always
possible to know if a break exists between two locations. If the difference in count between two
locations is equivalent to the distance between them, there could have been no break. If it is less
then there must have been a break. In the first condition the binary search should look farther,
since the break hasn’t occurred yet on the lower end. In the second condition the binary search

should look nearer.

1. intGetRunEnd(ContinuityMap map,int x, inty) {

2 int startValue = map.getContinuityAt(x,y) //The value that the query starts at
3. int lowerBound =y

4, int upperBound = map.Height

5

6

7

8

while(lowerBound < upperBound) {
int nextCheck = (lowerBound+upperBound)/2;
int distanceFromStart = nextCheck-y

9, intvalue = getContinuityAt(x,nextCheck)
10. if(value>startValue+distanceFromsStart) assertfalse //Impaossible condition
11. if(value==startValue+distanceFromsStart) {
12, if(lowerBound == nextCheck)

13. return lowerBound

14, lowerBound = nextCheck

15. }

16. elseif {

17. upperBound = nextCheck

18. }

19. }

20. returnlowerBound;

21}

Figure 40 Implementation of GetRunEnd(x,y).
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These two queries, GetValueAt(x,y) and GetRunEnd(x,y) allow for PixelJot’s segmentation

algorithm to quickly find the location and extent of whitespace on an image.

Crop Cut

The goal of a crop cut is to slice away whitespace on the perimeter of a region of interest (ROI),
and thus isolate an interior object. Figure 41 demonstrates the result of a crop cut against an
entire document. The margins of the document are shown as blue and green regions, and the
central area, shown in purple, is isolated. The crop cut thus receives as parameters an image,
with its vertical and horizontal continuity maps, and a ROI. It returns no more than five regions:

one region for each of the top, bottom, left, and right margins (if such margins exist), and another

region for the center.
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| Figure 41 A crop cut has created four overlapping margins (green and blue) and a single central area (in purple). |
The crop cut functions by moving vertical lines horizontally inward from the left and right edges

of the document, and horizontal lines vertically inward from the top and the bottom edges. Each
line is moved inward until it reaches a strip that is not visually uniform. Once the four margin
slices are found, deriving the margin and center regions is trivial. The trick then is finding these
stopping points. The crop algorithm determines when to stop moving a line inward by checking
the continuity image. A vertically uniform line will have a run that extends across the full length
of the ROI, but if there is a break in the line its continuity value at the bottom of the run will be

less than the height of the ROI. Figure 42 demonstrates how the left slice stopping point is found.

int findLeftSliceStoppingPoint(Image img, ROI roi) {
int leftStoppingPoint = roi.Right
for(int x=roi.Left; x<=roi.Right; + +x) {
if(img.VerticalMap.getValueAt(x,roi.Bottom) < roi.Height) {
leftStoppingPoint = x
break
}

}
return leftStoppingPoint

g I o N

0.}

Figure 42 Naive crop cut algorithm

Finding the stopping point for the top, right, and bottom slices is similar. The top and bottom
algorithms utilize a horizontal continuity map rather than the vertical. The heart of finding
stopping points comes from the condition of the IF statement on line 4. If the run at the bottom
of the ROI is longer than the height of the ROI, then that run must have extended the entire
length of the ROI. Therefore that line is considered to be entirely uniform. However, if the
value at the bottom of the ROI is less than the height of the ROI, then a count must have

restarted within ROI, and thus there must have been a break.
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follow

Figure 43 A crop cut attempting to segment two characters. Green arrows are vertical continuities, orange arrows
are horizontal continuities.

Unfortunately, this naive algorithm contains a critical flaw, while it works very well for the
larger blocks of a document, it begins to fail on the word and character level. Take for example
the double ‘L’s in the word ‘follow’ shown in Figure 43. Note that the ROl is set to a tight
bounding box around both of the ‘L’s. The green lines represent vertical runs, all four of which
run full length. The orange lines represent three separate runs along one line in the horizontal
direction. While only one horizontal line is shown, all of the horizontal runs would be the same
in this ROI. The naive algorithm would find each line vertically uniform and therefore when
moving inwards from the left would continue all the way to the right. Although each vertical
line is uniform, they are not the same kind of uniform. A horizontal continuity check shows that

there are breaks in this ROI.

This issue is solved by the cross checking algorithm shown in Figure 44.
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1. intfindLeftSliceStoppoingPoint(Image img, ROI roi) {

2 int leftStoppingPoint = roi.Right

3 for(intx=roi.Left; x<=roi.Right; + +x) {

4, if(img.VerticalMap.getValueAt(x,roi.Bottom) < roi.Height) {
5 leftStoppingPoint = x

6 break

7. }

8. }

9. leftStoppingPoint = Min(leftStoppingPoint

10. .img.HorizontalMap.getRunEnd (roi.Left,roi.Top))
11.  returnleftStoppingPoint

12, }

Figure 44 Cross-checking crop cut algorithm

The cross checking algorithm consults with the continuity map of the opposite direction. In the
case of Figure 43, the cross check asks the horizontal continuity map where its first run ends.
Since the very first run (the first of the orange arrows) is only one pixel long in Figure 43, this
value would be one. The minimum of the result from the naive algorithm and this cross check

yields the final stopping point that the crop algorithm uses.

Once these stopping points are created, the crop algorithm uses them to divide the image up into
the margins and the center region, then passes the center region on for further segmentation. The
margins are known to be entirely uniform areas, so they do not require any recursion. The center

area may then be cropped again, or a grid cut may be applied to it.

Grid Cut

Where the crop cut is designed to isolate interesting areas in a document, the grid cut is designed
to divide up already cropped regions. The grid cut looks for divisions inside the ROI. The grid

cut results in cells (interesting areas) divided by gutters (uniform areas). For example Figure 45
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and Figure 46 demonstrate a grid cut operating on the body of a document and on a paragraph

respectively.

Query-by-critique:
Spoken Language Access to Large Lists
Dan R. Peachey
i puter Scicnce Department
Lsa

Figure 45 The body of a document is separated into two columns (the blue regions) and the column gutter (the
green region) by a grid cut.

Figure 46 A paragraph is sliced into its various lines and the leading (a printers term for the space between lines)
between them by a grid cut.
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In Figure 45 a grid cut has divided the two columns of the paper and identified the column gutter
between them. In Figure 46 the grid cut has divided a paragraph into nine lines of text by placing
a gutter between each line along the text leading. For succinctness, we will explain the grid cut
as a vertical list cut. It is left to the reader to generalize the vertical list cut algorithms to the

corresponding grid cut algorithms.

In order to setup the grid cut algorithm, we will need to define three helper functions. The heart
of the grid cut algorithm is a predicate (shown in Figure 47) that determines if a row of pixels
belongs to a gutter or not. This predicate is called isGutter. Similar to the margin of the crop

cut, a gutter row of pixels is defined as a row with no breaks in it across the full width of an ROI.

1. booleanisGutter(Imageimg, ROl roi, inty) {
2. return img.HorizontalMap.getValueAt(roi.Right,y) > = roi.Width

3.1

Figure 48 The isGutter predicates determines if a given row belongs to a gutter or not.

Most of the work in the grid cut algorithm is searching across rows of the image looking for the
next row that does or does not belong to a gutter row. Figure 49 and Figure 50 define two
algorithms that help with this task. Both of them simply scroll through rows, finding the next

row that does, or does not, satisfy the isGutter condition.

int getNextGutter Row(Image img, ROI roi, inty) {
for(int cursorY=y; cursorY <= roi.bottom AND NOT isGutter(img,roi,y); ++ cursorY){ }
return cursory;

}

PN

Figure 49 The getNextGutterRow returns the y index of the next row considered a gutter.
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int getNextNonGutterRow(Image img, ROL roi, int y) {
for(int cursorY=y; cursorY <= roi.bottom AND isGutter(img,roi,y); ++ cursorY){ }
return cursory;

}

Eal s

Figure 50 The getNextNonGutterRow returns the y index of the next row not considered a gutter.

With these three helper functions defined, we’re ready to explore the body of the grid cut
algorithm. The object of the grid cut is to separate an ROI into several smaller ROIs, called
cells, separated by gutters. Once the locations and extent of the gutters are discovered, finding
the location and extent of the cells is trivial. It is simply the area in-between gutters. The trick
then is to find where the gutters lie. Figure 51 demonstrates this algorithm. In essence this is
simply a grouping algorithm. Each row that is considered as part of a gutter is grouped with all

of its adjacent gutter rows to make one larger gutter object.

1. List<Gutter> findGutters(Imageimg, ROI roi) {

2 List<Gutter> gutters = new List<Gutter>

3. inty = roi.Top

4. //Scroll through until we hit something interesting, start counting from
//there

5. y = getNextGutterRow (img,roi,y)

6. for(;y<=roi.bottom; ++y) {

7. if(isGutter(img,roiyy) {//Starts a gutter

8. intstartY = y++ //Store the start of the gutter

9. //Start looking for the end of the gutter at the next pixel

10. y = getNextNonGutterRow(img,roi,y)
11. gutteradd(new Gutter(startY,y)) //This gutter extends from startY to y

12, }
13. return gutters
14. }

Figure 51 findGutters determines where the gutters are in a given ROI.
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Over segmentation

While simple, this algorithm has a serious flaw. Like the crop cut’s original algorithm, this
works well on the macro-scale of the document, column, paragraph, or line level, but begins to
fail on the word and character level. Particularly, this grid cut algorithm segments characters too
deeply. Figure 52 demonstrates a short sequence of characters. Figure 53 shows where we
would like the grid cut to place a slice. Slicing between the characters separates them into two
distinct elements. Unfortunately, the naive grid algorithm stated thus far yields the result shown

in Figure 54,

Figure 52 A group of characters.

Figure 53 The red lines indicate where the we would like to segment this group of characters.
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Figure 54 The naive grid cut algorithm creates too many gutters .

In addition to one slice separating the ‘i' and the ‘m’, we get other slices within each of these

characters. This is because the black vertical lines composing the ‘i' and the ‘m’ are uniform and

full length and thus are considered valid gutter columns.

L___|

Figure 55

Figure 56

Figure 57

Figure 58

The largest drawback to this over segmentation is that it may, in turn, cause even more bad

segmentation. Let’s take for example the left most region created in Figure 54, which is shown

by the blue rectangle in Figure 55. This new region would be further segmented by cropping out
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the white strip on the top, and the black strip on the bottom, yielding the green region in Figure
56. This crop region would be divided again with a grid cut cutting along the four black pixels
near the top of the green rectangle. This gutter is shown by the solid blue box in Figure 57. If
we were to examine the lower cell of this grid cut, we’d see that the two white columns on the
left, and the single right column on the right would be removed by a crop cut, yielding the orange
region in Figure 58. From here the ROl would be reduced to the single black pixel at the bottom
of the orange region by another crop cut. As we can see, all of these cuts below the character
level are entirely inane. Often these trivial slices continue until the document image is sliced up
into single pixels, resulting in a massive HCT. This extremely large tree is burdensome to hold
in memory and repaint efficiently. Clearly some kind of stopping condition is needed on grid

slices.

We found that the most effective method of stopping this over segmentation is to enforce that
grid nodes slice only along background colored pixels. Figure 59 demonstrates the necessary

modification to the isGutter predicate that requires gutters to be of a background color.

1. booleanisGutter(Imageimg, ROl roi,inty) {

2 return img.HorizontalMap.getValueAt(roi.Right,y) > = roi.Width
3. AND isBackgroundColor(img.getPixel(roi.Right,y))
4 1}

Figure 59 The background-aware isGutter predicate.

In PixelJot the background is discovered globally for each page by finding the mode color.
Other methods could be employed to find the background color locally for a given ROI, which

would allow segmentation to work on pages with several different background colors. However,
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since this is atypical of most documents, one global background color per page has sufficed.
Slicing only along background colored pixels yields results like Figure 53 with no further

segmentation possible.

Hierarchically inferred cutting

Another important modification to the naive grid cut algorithm is not immediately taking all
available cuts. The object of segmentation is to build a hierarchal context tree, and there may be
times that deferring a grid cut until later actually constructs a better hierarchy. Take for example
Figure 60. In this figure there are forty-three horizontal slices possible, the gutters of each is

shown in green. We would expect a segmentation of this column to appear as Figure 61.
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TRACT

Spoken language interfaces provide highly mobile, small
form-factor, hands-free, eyes-free interaction with|
information. Uniform access to large lists of information
using spoken interfaces is highly desirable, but
problematic due to inherent limtations of speech. A
speech widget for lists of attmbuted objects 1s described
that provides for approximate quenes to retrieve desired
items. User tests demonstrate that this is an effective
technique for accessing information using speech.

[e)}

KEYWORDS: Spoken language mterfaces, search, tables

INTRODUCTION i
The ICE (Interactive Computing Everywhere) project is
focused on building infrastructure and interactive
techriques that allow people to interact with information|
and services from a vanety of physical situations. We see|
speech as a major component of such efforts. The major |
benetits of speech are that it is independent of physical
[posture, can be hands/eyes free, requires only a small
physical size, and has very low power requirements.

% 6
(Our approach 1s to create a set of “speech widgets™ that 36

can be readily composed to creats a variety of]
applications, rather than natural language dialogs. Such|

widgets would have a standard “hear and say,” much like

the “look and feel™ standards in graphical user interfaces 6
[10]. ‘With a standardized widget sef, developers can

spend a significant amount of time working out the

usability of the widgets. This effort can then be easily
leveraged across all uses of the widget.

Figure 60 A column of a research paper with possible gutters shown in green. The height of each gutter is
indicated to its right.
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ABSTRACT

Spoken language interfaces provide highly mobile, small
form-factor, hands-free, eyes-free interaction with
information. Uniform access to large lists of information
using spoken interfaces is highly desirable, but
problematic due to inherent limitations of speech. A
speech widget for lists of aftributed objects is described
that provides for approximate queries to retrieve desired
items. User tests demonstrate that this is an effective
technique for accessing information using speech.

Keywords KEYWORDS: Spoken language interfaces, search, tables

INTRODUCTION

—|The ICE (Interactive Computing Everywhere) project is
—|focused on building infrastructure and interactive
— techmques that allow people to mteract with information
—|and services from a variety of physical situations. We see
—|speech as a major component of such efforts. The major
—|benefits of speech are that it is independent of physical
—|posture, can be hands/eves free, requires only a small
—|physical size, and has very low power requiremerts.

Column

—|Our approach is to create a set of “speech widgets” that
—|can be readily composed to create a variety of
—|applications, rather than natural language dialogs. Such
—|widgets would have a standard “hear and say.” much like
—|the “look and feel” standards in graphical user interfaces
—[[10]. With a standardized widget set, developers can
—lspend a significant amount of time working out the
—|usability of the widgets. This effort can then be easily
— |leveraged across all uses of the widget.

Figure 61 The expected segmentation of Figure 60. An actual segmentation tree would be unlabeled.

If the grid cut were to greedily take every possible slice, the result would appear like the tree in
Figure 62. This is because all of the green gutters of Figure 60 would be used simultaneously,
and thus lines of different paragraphs or even sections would find themselves peers of each other

under the same grid cut in the HCT.
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Spoken language interfaces provide highly mobile, small
form-factor, hands-free, eyes-free interaction with
information. Uniform access to large lists of information
using spoken interfaces is highly desirable, but
problematic due to inherent himitations of speech. A
speech widget for lists of attributed objects is described
that provides for approximate queres to retrieve desired
items. User tests demonstrate that this is an effective
technique for accessing information using speech

KEYWORDS: Spoken language interfaces, search, tables

INTRODUCTION

The ICE (Interactive Computing Everywhere) project is
focused on building infrastructure and interactive
techniques that allow people to interact with information
and services from a variety of physical situations. We see
speech as a major component of such efforts. The major
benefits of speech are that it is independent of physical
posture, can be hands/eyes free, requires only a small
physical size, and has very low power requirements.

Column

(Our approach is to create a set of “speech widgets™ that
can be readily composed to create a variety of]
applications, rather than natural language dialogs. Such
widgets would have a standard “hear and say,” much like
the “look and feel” standards in graphical user interfaces
[10]. With a standardized widget set, developers can
spend a significant amount of time working out the
usability of the widgets. This effort can then be casily
leveraged across all uses of the widget

Figure 62 The segmentation of Figure 60 if the grid cut greedily takes all possible slices.

Rather than taking all available slices, the grid cut needs to determine that some slices should
occur before other. The less important slices would be deferred to occur further down the HCT.

How then can the grid cut infer the relative importance, and thus the correct order, of slices?

Prioritizing slices using maximum gutter

Looking again at the pattern of circles that inspired perceptually inferred segmentation shows
how to prioritize slicing. The pattern is shown again in Figure 63 for convenience. Earlier we

discussed that our brain is able to segment this pattern into various groupings of circles, and that
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the reason it is able to do so is because of the whitespace between the circles. What then allows
us to designate the importance of one grouping from the other? Clearly the amount of
whitespace matters. The more the whitespace between groups, the higher we put them in our

mental hierarchy.

Figure 63 Our brain naturally groups these circles on various levels.

Remember that documents are designed for human consumption, and thus lines, paragraphs, and
sections are all given gaps of varying sizes to designate importance separation. In Figure 60
notice that the largest gaps represent breaks between sections, smaller gaps breaks between
paragraphs, and the smallest breaks between lines. Thus by prioritizing slices based on the

amount of whitespace between elements, a better hierarchy can be inferred.
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1. List<Gutter> findGutters(Image img, ROI roi) {
List«Gutter> gutters = new List<Gutter>
3. inty = roi.Top

N

o

//Scroll through until we hit something interesting, start counting from
//there
y = getNextGutterRow (img,roi,y)
for(;y<=roi.bottom; + +v) {
if(isGutter(img,roi,y) {//Starts a gutter

intstarty = y++ //Store the start of the gutter

//Start looking for the end of the gutter at the next pixel
10. y = getNextNonGutterRow(img,roi,y)
11. gutteradd(new Gutter(startY,y)) //This gutter extends from startY to y

W N o e

12. 1}
13.  return GetPriorityGutters (gutters)
14. }

Figure 64 Modified findGutters algorithm filtering of found gutters to the priority gutters.

The algorithm in Figure 64 modifies the original findGutters routine by adding a filter on the
results (see line 13). Rather than yielding all possible gutters, only those gutters considered to be

top priority are returned. Figure 65 contains the pseudo-code for GetPriorityGutters.

1. List<Gutter> GetPriorityGutters(List<Gutter> input) {
2. List<Gutter> output = new List<Gutter>()

3. int maximumGutterSize = -1

4, for each(Gutter g in input) {

5. int gutterSize = g.EndY — g.StartY

6. maximumGutterSize — Max(maximumGutterSize gutterSize)
7. }

8. for each(Gutterg ininput) {

9. int gutterSize = g.EndY — g.Starty

10. if(gutterSize== MaximumGutterSize)

11. output.add(g)

12, 1}

13.  return output;

14. }

Figure 65 GetPriorityGutters filters the input to only gutters the same height as the largest.
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This implementation of GetPriorityGutters simply finds the size of the maximum gutter, and
returns all gutters of equivalent size. This change in the grid cut algorithm yields the HCT

shown in Figure 66.
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the “look and feel™ standards 1n Em:phi cal user interfaces
10]. With a standardized widget set, developers can
pend a significant amount of time working out the
ability of the widgets. This effort cam then be easily
everaged across all uses of the widgel

Column

Intro 9 1

Intro 9 2

Figure 66 Result of slicing only along the maximum sized gutter.

There are two anomalies on this HCT. The first is designated by the red nodes. Like the HCT in
Figure 61, we would expect the column to be broken into the separate sections. Instead the first
division breaks the column into a before keywords, and after keywords grouping, and only

afterwards reduces into sections. If we examine the original column with its breaks (Figure 67),

we can see why.
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IABSTRACT

Spoken language interfaces provide highly mobile, small
form-factor, hands-free, eyes-free interaction with
information. Uniform access to large lists of information
using spoken interfaces is highly desirable, but
problematic due te inherent limitations of speech. A
speech widget for lists of attmbuted objects 1s described
that provides for approximate quenes to retrieve desired
items. User tests demonstrate that this is an effective
technique for accessing information using speech.

[e)}

KEYWORDS: Spoken language mterfaces, search, tables
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INTRODUCTION

The ICE (Interactive Computing Everywhere) project is
focused on building infrastructure and interactive
techriques that allow people to mteract with information
and services from a vanety of physical situations. We see|
speech as a major component of such efforts. The major
benefits of speech are that it is independent of physical
[posture, can be hands/eyes free, requires only a small
physical size, and has very low power requirements.

— 19
% 6
. - - 36

(Our approach 1s to create a set of “speech widgets™ that

can be readily composed to create a varety of]
applications, rather then natural language dialogs. Such

widgets would have a standard “hear and say,” much like

the “look and feel™ standards in graphical user interfaces 6
[10]. With a standardized widget set, developers can

spend a significant amount of time working out the

usability of the widgets. This effort can then be easily
leveraged across all uses of the widget.

Figure 67 Gutters in a column of a research papers. Gutters are shown in green with their heights indicated to the
right.

Notice that the largest gutter is between the keywords and the introduction sections at thirty-
seven pixels tall. The other two breaks we’d expect to be taken are only thirty-Six pixels tall.

We do not notice a difference so slight as one pixel, but the revised grid cut algorithm does.
Because of this it introduces an odd intermediate layer of structure. Taking the absolute maximal

gutters is brittle in the face of slight differences in whitespace sizes.

The second anomaly designated by the orange nodes, will be addressed later on.

Prioritizing slices using near maximal gutters
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To fix this anomaly, we introduce a threshold value called the “equivalent importance ratio”.
Any gutter whose size is within this ratio to the size of the maximal gutter is also considered
equivalent to the maximal gutter and thus included as a priority gutter. This ratio reflects the

degree of imprecision in our eyes and is normally set to about 0.75.

1. List<Gutter> GetPriorityGutters(List<Gutter> input) {

2. List<Gutter> output = new List<Gutter>()

3. int maximumGutterSize = -1

4, for each(Gutterg ininput) {

5. int gutterSize = g.EndY — g.StartY

6. maximumgGutterSize — Max(maximumGutterSize,gutterSize)
7. 1}

8. for each(Gutterg ininput) {

9. int gutterSize = g.EndY — g.StartY

10. if(gutterSize>= MaximumGutterSize*EquivalentimportanceRatio)
11. output.add(g)

12. 1}

13.  returnoutput;

14. }

Figure 68 The modified GetPriorityGutters filters the input to only gutters the near same height as the largest.

Since 0.75 x 37 = 27.75, and 36 is greater than 27.5, then the two cuts that the original
GetPriorityGutters algorithm deferred will indeed be taken in this modified version. The updated

grid cut algorithm yields the HCT shown in Figure 69.
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Figure 69 The HCT generated by the grid cut with the modification of Figure 68.

This does solve the problem of the previous grid cut algorithm, but there are two anomalies. The
first, shown in red, is that rather than grouping the entire introduction into one section, and later
dividing the intro into its constituent paragraphs as does the ideal HCT of Figure 61, the
modified algorithm immediately divides the intro into paragraphs with no intermediate section
step. Unfortunately, if we examine the column that we’re trying to segment (Figure 67), we’ll
see that there is no way to infer this break by looking at spacing alone. This particular paper is
formatted such that the breaks between sections and the breaks between paragraphs are the same

size.

The second anomaly (also present in Figure 66) is shown in orange. Rather than breaking up the

body of the abstract directly into its constituent lines, the grid cut has introduced an intermediate
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layer of structure, breaking the paragraph into an upper and lower section. Again, examining
Figure 67 will show us why. Notice that in-between most lines of the paragraph the gutters are
six pixels high. However, between the last and the penultimate line the gutter is twelve pixels
high. A closer examination shows that this is because the penultimate line of text has no
descenders. Descenders are any characters that extend below the base line of text such as the
letters ‘g’, °q’, ‘p’ or ‘y’. Because these lines don 't extend below the base line, but most
applications still give room on each line for descent, there is more space between a descenderless
line and the next than between a line with descenders and its next line. Figure 70 illustrates this
issue. The descenderless line has as gap with twice the height as the line with descenders.
Modifying the equivalent importance ratio to be small enough to keep these lines from being

grouped separately puts it too low for quality cutting elsewhere.

speech widget for lists of attnbuted objects 1s described

- : : : . b pixels
that provides for approximate quenes to retrieve desired P

items. User tests demonstrate that this 15 an effective
techmque for accessing inforination using speech.

12 pixels

numbers, dates, hmes, menus, and selection from small,

. . . 3 pixels
enumerated lists are quite common. It 15 also common to P

Figure 70 Spacing between lines for a line with descenders, a line without descenders, and a line without
descenders but with commas.

However, this additional layer of structure may not be an entirely grievous offense for two
reasons. First of all, it doesn’t occur often. By informal survey, double column research papers

have a descenderless line once every four paragraphs. Single column papers nearly never have a
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descenderless line. The author has never yet seen a line of text in any paper which has a line

with no ascenders, though this would cause a similar issue.

The second reason to disregard this error is that the tools we develop are rarely hindered by this
slight degree of extra hierarchy. Take for example selection. In selection, the HCT is used for
snapping the user’s selection rectangle to a nearby element in the tree. Selecting a paragraph is a
reasonable task. Selecting a line is also a reasonable task. However, selecting the lower portion
of a paragraph is not likely to ever happen. The arbitrary additional layer introduced by the

decenderless line will probably never be discovered because no user is likely to try and select it.

Segmentation of document images leverages perceptual structure to infer an appropriate
hierarchy. Segmentation composes a hierarchical context tree by recursively applying crop cuts
and grid cuts to regions of a document. Once divided into an HCT, PixelJot can use this

hierarchy to reflow pages, offer link context expansion, and improve selection accuracy.
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LAYOUT

With the HCT available, several key operations become possible, including layout. When
annotating a document, a user will often want to insert comments or insert a visual link as a cross
reference. However, the document may not have room in its whitespace to accommodate these
insertions. Suppose the comment block shown in Figure 71 needs to be inserted at the space
between the two paragraphs. Clearly it will not fit. Ideally, rather than blocking the areas of

text, the page should reflow, making room for the comment as in Figure 72.

Laser Pointer Interaction

This iz an idea that | hawe ‘raVis Nielsen
Computer S (J |I= there an easier way of doing this? 'lyoung Uni\;ersity‘ Pro‘ro, UT

It doss seem like thay did this pretty cheaply

Hawen't WebCam's dropped in price since this paper cs l_‘] Y. edu

I'm glad that this comment block will make it into this
area.

ABSTRACT equipment consists of a computer attached to a projector
Group meetings and other non-desk situations require\Qat and a camera to detect the laser pointer pesition. We used a
people be able to interact at a distance from a displd standard 1024 x 768 projector connected to a laptop PC.
surface. This paper describes a technique using a laser For the camera we used a $500 WebCam that can deliver
pointer and a camera to accomplish just such interactions. W to 7 frames per second over TCP/IP. This camera
Calibration techniques are given to synchronize the display ection is very slow, but adequate for our initial tests.

and camera coordinates. A series of interactive techniques
are described for navigation and entry of numbers, times,
dates, text, enumerations and lists of items. The 1ssues of
hand jitter, detection error, slow sampling and latency are
discussed in each of the interactive techniques.

In addition to meeting situations, this technique is useful
wherever the user is in a situation for which a large
projected display is possible, but a local personal display
would be awkward. Examples include a repair shop with
service Information displayed on the wall, a laboratory

Keywords where instrument controls are displayed on the wall, or as
Laser p.oirlter Interaction, group interaction, camera-based an alternative fo the tradifional television IR remote. In
Interaction. situations where the hands are occupied, the laser could be
INTRODUCTION mounted on the back of a half-finger glove with the
A very interesting setting for interactive computing is in a actuator switch on the side of the glove. This would require
meeting where the display is projected on the wall. use of the‘hand to Roint, but would eliminate searching for
Projection of the large image allows all participants sitting and grabbing the pointer.

Figure 71 The comment in blue needs to be inserted at the arrow point.
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Laser Pointer Interaction

Dan R. Olsen Jr. and Travis Nielsen
Computer Science Department, Brigham Young University, Provo, UT
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ABSTRACT

Group meetings and other non-desk situations require that
people be able to interact at a distance from a display
surface. This paper describes a technique using a laser
pointer and a camera to accomplish just such interactions.
Calibration techniques are given to synchronize the display
and camera coordinates. A series of interactive techmques
are described for navigation and entry of numbers, fimes,
dates, text, enumerations and lists of items. The issues of
hand jitter, detection error, slow sampling and latency are
discussed in each of the interactive techniques,

Keywords
Laser pointer interaction, group interaction, camera-based
interaction.

INTRODUCTION

A very interesting setting for interactive computing is in a
meeting where the display is projected on the wall.
Projection of the large image allows all participants sifting
in their chairs to see the information under discussion. This
provides a shared environment that can ground the
discussion and provides an equal discussion point for
everyone. However, if the information is interactive, only

B T R = M
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equipment consists of a computer attached to a projector
and a camera to detect the laser pointer position. We used a
standard 1024 x 768 projector connected to a laptop PC.
For the camera we used a $500 WebCarn that can deliver
up to 7 frames per second over TCP/IP. This camera

connection is very slow, but adequate for our initial tests.
This is an idea that | hawve

Is there an easier way of doing this?
It does seem like thay did this pretty cheaphy
Haven't Web Cam's dropped in price since this paper

I'm glad that this comment block will make it into this
area

In addition to meeting situations, this technique is useful
wherever the user is in a situation for which a large
projected display is possible, but a local personal display
would be awkward. Examples include a repair shop with
service information displayed on the wall, a laboratory
where instrument controls are displayed on the wall, or as
an alternative to the traditional television IR remote. In
situations where the hands are occupied, the laser could be
mounted on the back of a half-finger glove with the
actuator switch on the side of the glove. This would require
use of the hand to point, but would eliminate searching for
and grabbing the pointer.

Figure 72 The paragraphs flow to make room for the inserted comment.

Knowing where to move elements of a document can be a difficult problem. Take for example
the gray block in Figure 73. If we were to insert it where the arrow indicates, where would the
paragraphs, title, and columns flow? We, as humans, understand that the result should look
something like Figure 74. The column on the left flows vertically, causing paragraphs below the

insertion point to shift downwards. The right column and title should be unaffected.
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Figure 73 The gray block must be inserted at the
arrow point.

Figure 74 The block is inserted and the remainder of the
paragraphs adjust to make room.

However, if instead the insertion were to occur only a little farther to the right, as in Figure 73,

we would expect the totally different result of Figure 74.

L =

__t

Figure 75 The gray block must be inserted at
the arrow point.

Figure 76 The block is inserted and the remainder of the
paragraphs adjust to make room.

65

www.manaraa.com



Therefore, determining what elements should move where is a fairly difficult problem for a
computer, but very natural for humans. Combining an HCT with a well established widget
layout algorithm provides a good programmatic solution. Variable Intrinsic Size [11] (VIS) is a
layout algorithm originally designed for placing hierarchical widgets in variable size windows.
It has the trait of allowing for some components to be rigid and others to expand or contract,
filling extra space. The original VIS algorithm provides for three classes of size: minimum,

preferred, and maximum.

Non leaf nodes in the HCT are simply composites of their children. However, leaf nodes must
define a value for each of the three size classes. Some leaves in the tree contain only whitespace
where others have content. We define the values for each of the four size classes differently for

these two kinds of leaves as shown in Figure 77.

Minimum Preferred  Maximum
Whitespace leaf A small constant  Natural size Infinity
Non-whitespace leaf Natural size Natural size Natural size

Figure 77 The values of each size class for whitespace and non whitespace nodes

This makes the non-whitespace leaves rigid, unable to scale up or down, while the whitespace
leaves can grow from a small constant to infinitely large. The makes it so that characters and
figures are never be distorted due to resizing, but instead the whitespace will expand to fill up

gaps. Whenever any change is made, the entire page is repacked to its preferred size.
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SELECTION

Selecting image objects is a difficult task. There are many existing algorithms designed to assist
users in image selection tasks such as intelligent scissors, min-graph cut, geodesic selection, and
the humble lasso. While many of these techniques are powerful for foreground-background
tasks, users would be frustrated to have to use them on our rasterized documents. These
techniques are not well specialized for documents. In document selection users want to select
elements of the document, such as the title or a paragraph, not pixels. Clearly there is a need for
a selection algorithm that can operate against the HCT rather than only the document image. We
introduce two different kinds of selection techniques. One employs a bounding box as its user-
given input while the other works with a highlighter-like stroke. The output of both algorithms

is a collection of HCT tree nodes to be selected.

Selection by Bounding Box

Bounding box selection is triggered by the user rubber banding out an area of a document.
Ideally, a good bounding box algorithm will snap to elements of the document. For example,
suppose a reader wants to select several lines of a document. The user has provided the
bounding box shown in Figure 78. We would expect the two lines shown in Figure 79 to be

selected.

product design, the focal point of an interactive session is to produce an
information artifact that meets the goals of the user. The purpose of the
user 1nterface 1s to provide browsing and editing functions for manipulating
and modifying the artifact until it reaches the state desired by the user.

The centerpiece of such an interactive system is the data being manipu-
lated by the user through the user interface (UI). The data might be fairly

Figure 78 A bounding box provided by a user to select two lines.
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product design, the focal point of an interactive session is to produce an
information artifact that meets the goals of the user. The purpose of the
user interface 1s to provide browsing and editing functions for manipulating
and modilying the artifact until 1t reaches the state desired by the user.
The centerpiece of such an interactive system is the data being manipu-
lated by the user through the user interface (UI). The data might be fairly

Figure 79 A selection rectangle like that above should select these two lines.

We expect this result even though the bounding box in Figure 78 doesn’t even entirely contain
both of these lines. Instead it clips off the top and right edge of the first line and the bottom of
the second. A good selection algorithm should work even in the face of misdrawn input

rectangles.

Users often misdraw the bounds of a selection for two reasons. First, they may be selecting
quickly and thus haste causes a crude selection rectangle. Second, users are often unaware of the
full bounds of an element because they fail to notice the full reach of ascenders and descenders
in text. The selection rectangle of Figure 78 that clips both the top of the ‘f” on the first line and

the bottom of the ‘y’ on the second would be typical even of a fairly careful user.

A naive selection algorithm is to select all nodes contained within the selection bounds. This

algorithm would appear as in Figure 80.
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1. List<Node> BoundingBoxSelectAgainst (ImageArea roi, Node root) {

2. List«Node> output = new List<Node>()

3. RecursiveSelect(output,roiroot)

4, return output

5.}

1. void RecursiveSelect(List<Node> selected,ImageArea roi,Node node) {
2. ImageArea nodeBounds = node.Bounds

3. if IsSelected(roi,nodeBounds,node) {

4, selected.add(node)

5. }

6. if roi.intersects(nodeBounds)

7. for each(Node child in node.Children)

8. RecursiveSelect(selected,roi,child)

9. 1}

1. booleanlIsSelected(ImageArea roi,ImageArea nodeBounds, Node node) {
2. return roi.contains(nodeBounds)

3. 1}
Figure 80 Naive selection algorithm.

However, as seen in Figure 81 and Figure 82 this leads to two issues.

1. If anode is contained in the selection bounds, so are all of its children. Thus all nodes in

the tree from the first contained node down to all of its leaves are selected. This causes

the result to be cluttered.

2. If the user misses the bounds of an element by even a single pixel, that element is no

longer contained and therefore not selected.

approach called Nanites that is designed to simplify the task of monitoring complex data

structures.

Categories and Subject Descriptors: D.2.2 [Software Engineeringl: Tools and Techniqyes;

H.5.2 [Information Interfaces and Presentation]: User Interfaces

General Terms: Design, Human Factors, Performance

Additional Key Words and Phrases: CSCW, multiuser interfaces, Nanites, user interface

Figure 81 A bounding box intended for selection against some elements of text.
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approach called Nanites that is designed to simplify the task of monitoring complex data

structures.
Cafzsiris= and Hobj=cf Us=tnprond| D27 [Software [ Kngineerhins ool Bod) (U= chincues;
H. 52 Mnafovmiaiion Intevfatsy and Preesenitatson || U TniEriat ==

General Terms: Design, Human Factors, Performance

Additional Kev Words and Phrases: CSCW. multiuser interfaces. Nanites. user interface

Figure 82 Result of selection using containment algorithm.

The first issue is simple enough to remedy. When a parent node is selected, simply do not select
the children because they are implicitly selected through the parent. Figure 83 codifies the

modification.

void RecursiveSelect(List<Node> selected,ImageArea roi,Node node) {
ImageArea nodeBounds = node.Bounds
if IsSelected(roi,nodeBounds,node) {
selected.add(node)
return

}

R e

if roi.intersects(nodeBounds)
for each(Node child in node.Children)
RecursiveSelect(selected,roi,child)

2w oo~

Figure 83 Modification of RecursiveSelect to prevent selecting children of an already selected parent.

The second issue, that of snapping the bounding box to nearby elements, takes a little more
consideration. The key to resolving this issue is, rather than enforcing full containment, to allow
partial containment. We’ll consider a node selected if it is “mostly contained” by the selecting
rectangle. This calls for a threshold, labeled the ContainmentRatio, which determines the degree
to which areas of the selection bounding box and a node’s bounding box must overlap to be

selected. A value of 1 degenerates to full containment (the node must be entirely inside the
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selection bounding box), where a value of 0 means only intersection of a node with the selection

bounds is required to be considered selected. Figure 84 shows the new IsSelected routine.

booleanIsSelected(ImageArea roi, ImageArea nodeBounds, Node node) {
if NOT roi.intersects(nodeBounds)
return false
if roi.contains(nodeBounds)
returntrue

vk wne

ImageArea intersection = roi.intersection(nodeBounds)

float intersectionArea = intersection.Area

float nodeArea = nodeBounds.Area

return (nodeArea-intersectionArea)/nodeArea <= (1-ContainmentRatio)

2w ~No;

Figure 84 Modified IsSelected algorithm allows for nodes to be only partially contained by the selection bounds.

In practice setting ContainmentRatio to about 0.85 gives good results. Figure 85 demonstrates

the results of this algorithm with similar input bounds as in Figure 81.

approach called Nanites that is designed to simplify the task of monitoring complex data
structures.

Categories and Subject Descriptors: D22 [Software Engineering|: Tools and Techmiques;
H.5.2 [Information Interfaces and Presentation]: User Interfaces

General Terms: Design, Human Factors, Performance

Additional Key Words and Phrases: CSCW, multiuser interfaces, Nanites, user interface

Figure 85 Result of selection using the partial containment algorithm.

Notice that while the user has clipped off the left and right edges in their selection, the partial
containment algorithm has snapped to selecting the whole section. Figure 79 was also generated

by the modified selection algorithm with Figure 78 as the input.

Selection by Stroke

Stroke based selection is motivated by highlighter-like interactions. Rather than using a

bounding box to select an element, the user strikes through the element with the highlighter.
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Highlighters are more natural to annotation based reading than bounding boxes and are simpler
to use. When a user is drawing a bounding box, they must continually recheck the entire
selection area to make sure that they have what they want in the bounds. However, with a
highlighter, once drawn, the path does not change. Thus a user only needs to look where they’re
going next. These differences are sufficient to motivate including highlighter-like selection, and

thus require a stroke based selection algorithm.

Sometimes people use highlighter strokes to diagonally strike through an entire paragraph [12],
effectively treating the highlighter like a bounding box. Two naive algorithms seem initially
plausible. The first is to use the minimal bounding box of the selection stroke as the input into

the bounding box selection algorithm.

Figure 86 A stroke (shown in brown) is intended to select these letters. The red rectangle represents the minimal
bounding box of the stroke.

Figure 86 demonstrates a stroke used to strike through a pair of words. We would expect this
stroke to select the two words. However, since the bounding box of the stroke is very small it
would make a poor input into the bounding box selection algorithm. A highlighter stroke need
only cross through an element. In this case a horizontal line is sufficient to touch all the
characters. Any vertical deviation in the stroke is purely coincidental hand jitter. Thus a perfect
stroke, one with no vertical deviation at all, would have no area either, making it entirely

unsuitable for the bounding box selection algorithm. An input like that of Figure 86 would yield
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none of the characters as selected. Clearly an algorithm that considers the unique semantics of a

stroke is necessary.

Another naive algorithm is to select any element that intersects the path of the stroke. While this
appears plausible at first, remember that the root node, the entire page, would intersect any stroke
on it, and thus would always be selected. The obvious modification is to only select leaf nodes

that intersect a stroke as in the Stroke Intersection algorithm of Figure 87.

1. List«Node> StrokeSelectAgainst(Stroke stroke, Node roof) {
2. List<Node> output = new List<Node>()
3. StrokelntersectionSelect(output stroke root)
4, return output
5 }
1. void StrokeIntersectionSelect(output (List<Node> selected,Stroke stroke,Node node) {
2. ImageArea nodeBounds = node.Bounds
3. if IsSelected(stroke,nodeBounds,node){
4, selected.add(node)
5. return
6. }
7. if roi.intersects(nodeBounds)
8. for each(Node child in node.Children)
9. StrokelntersectionSelect (selected,roi,child)
10. }
1. boolean IsSelected(Stroke stroke, ImageArea nodeBounds, Node node) {
2. return stroke.intersects(nodeBounds) AND node.isLeaf
3.}
Figure 87 The Stroke Intersection stroke selection algorithm.

However, this too has failures. Figure 88 shows a stroke that does not intersect all of the relevant
leaf nodes. The dot’s in the character ‘i' are separate from their stalk, and thus are separate leaf

nodes. They are isolated because the stroke does not explicitly intersect them.
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Figure 88 The highlighter stroke (dark brown) using the leaf intersection algorithm has missed the dots in the ‘i's.

Additionally the Stroke Intersection algorithm entirely fails to gracefully degenerate into

bounding box selection when a paragraph is struck through as shown in Figure 89.

£ acal point of many interactive systems 1s an information artifact being created an
manipulat®d by one or more users through a user intertace. The software components of such
an interactive sy®eam perform their tasks relative to the data structures that represent the
mformation artiact. SystEmu:0mponents nteract with each other by changing these data and
responding when relevant chang@~wemade to them by other components. Perhaps the most
ditfficult problem to be solved when buildiny™swsch Hdata-centric systems 1s the monitoring
problem. System components require the ability to watceh 16rSsdxespond to changes made to
complex data structures, Previous monttoring approaches are geared towatGsaonitoring single

data 1iems rather arn entire data Structures, his article describes a new Sonitor ng
aggroac called Nanites Lhat 1s designed to simpll e task of momtoring complex dats
SLFUCTUreEs.

Figure 89 A highlighter stroke using the leaf intersection algorithm misses the paragraph all together when used to
strike through it, but catches the leading gutters.

A compromise between the bounding box and leaf intersection algorithm gives good results.

This modification, shown in Figure 90, uses two passes.

List«Node> StrokeSelectAgainst(Stroke stroke, Node root) {
List<Node> output = new List<Node>()
StrokelntersectionSelect(output,stroke, root)
ImageArea bounding = GetSmallestBoundingBoxOfNodes(output)
. return BoundingBoxSelectAgainst(bounding,root)
}

S

Figure 90 Modifying StrokeSelectAgainst makes the stroke selection algorithm more robust.
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The first pass uses leaf intersection to collect a list of nodes that the stroke intersects. The
second pass uses the bounding box of the results from the first pass as the selection bounds
parameter in the bounding box selection algorithm. For the second pass a Containment Ratio of

0.6 is used to compensate for the additional sloppiness inherent to strokes.

The effect of this two pass algorithm is that the first pass finds the elements that designate the
atomic pieces of the selection. For example in Figure 88 this is each individual character, or in
Figure 89 it is the horizontal leading lines of the paragraph. The second pass widens the scope of
the selection to include anything on the size magnitude of those atomic pieces. This causes the
dot of the ‘i' or the paragraph to be selected because it is within the same size magnitude of the
other characters, which are explicitly selected by the Stroke Intersection algorithm. Figure 91
and Figure 92 demonstrate the results of this modification. Notice in Figure 91 that the entire
word is selected correctly even though the stroke does not explicitly intersect the dots of the ‘i's.

Figure 92 demonstrates that this algorithm can gracefully degenerate to bounding box selection.

— e

Figure 91 The entire word is selected with the two pass stroke selection algorithm.

1 ocal point of many interactive systems 1s an information artifact being created and

an interactive Systgm perform their tasks relative to the data structures that represent the
information artifact. Sy
responding when relevant changés made to them by other components. Perhaps the most
difficult problem to be solved when builting such data-centric systems is the moniforing
problem. System components require the ability watch for and respond to changes made to
complex data structures. Previous monitoring approaches are} d toward monitoring single
data items rather than entire data structures. This article describes a ni
approach called Nanites that is designed to simplify the task of monitoring comple
structures.

onitoring

&=

Figure 92 The entire paragraph is selected with the two pass stroke selection algorithm.
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VISUAL LINKS AND CONTEXT EXPANSION

Linking together ideas is a fundamental part of learning, making linking and cross referencing a
fundamental part of annotating. The tradition method of linking is to use hyperlinks with text

based tags to describe the target, as in Figure 93.

Dr.Olsen's Lab Homepage

Figure 93 A semi-opaque link shows a limited description of the target.

Unfortunately this kind of link is rather opaque, blocking most information about its target
beyond a short string. PixelJot employs visual linking. A scaled down visual thumbnail of the
link’s target is shown as the link rather than a small blurb of text. This kind of linking allows for

users to instantly see what the target is.

The HCT makes it possible to not only use visual links to show a specific target, but also to show
that target in context. Links are useful because they don’t bring the entire source document with
them; instead they are a compact reference. However, when reviewing notes, often the context
of the link may be forgotten. Of course the link can be followed in PixelJot by double clicking to
open the target document in a new window. However, this distracts the reader from the task of
reviewing the source work by entirely diverting attention to the new document. Instead it would

be convenient to be able to find the context of a link and expand it in place.

77

www.manaraa.com



In Place Expansions

PixelJot offers a method of expanding a visual link. Expansion of a link increases the view
window around the target so that more of the target’s document can be seen. For example,
expanding the context of the link in Figure 94 would increase the scope of the target from the
phrase to the entire line, as in Figure 95. Expanding the context again would reveal the entire
paragraph as in Figure 96. Expanding again increases the scope to the entire column (Figure 97).
Additional expansion of context after this would change the scope to the two columns together,

then the entire document.

SPICIE framework

Figure 94 A visual link to a phrase.

This paper introduces the SPICIE] [ramewark] for annexing

Figure 95 The visual link to a phrase shown in Figure 94 is expanded to show the entire line. The original phrase is
selected.

ABSTRACT

This paper introduces the FPICIE] [famework] for annexing
display servers and sharing content on available screens
SPICIE allows a user carrying a portable device, such as a
laptop or tablet, to annex additional screen space for her
device. She then selects windows on her device to share
with the annexed screens. In particular, overlapping
windows on her personal device may be spread out (de-
multiplexed) so that they do not overlap on the annexed
screens. SPICIE protects user privacy by ensuring that only
pixels generated by explicitly shared windows are
transmitted to the display server Nultiple users may also
sirnultaneously annex the screens fo share content.

Figure 96 The line is expanded to show the paragraph.
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ABSTRACT

This paper introduces the SPICLE ramewak for annexing
display servers and sharing content on available screens.
SPICIE allows a user carrying a portable device, such as a
laptop or tahlet, to annex additional screen space for her
device. She then selects windows on her dewice to share
with the annexed screens. [n particular, overlapping
windows on her personal device may be spread out (de-
multiplexed) so that they do not overlap on the annexed
screens. SPICIE protects user privacy by ensuring that only
pizels generated by explicitly shared windows are
transttted to the display server Multiple users may also
sumultaneously annex the screens o share content.

Author Keywords
de-multip lexx pixels, annex screen, protect privacy

ACM Cassification Keywords
H5.m Information interfaces and presentation (e.g, HCI):
Miscellaneous.

INTRODUCTION

People are mereasingly nomadic, and must manage large
quantities of mformation In particular, people need ther
personal information with them wherever they are An
effective technique for keeping information availahle is to
carry that mformation with the vser on a portable computer
such as a laptop or tablet. These personal devices have
portable form factors, bul have limited screen space
Consequently, users are challenged to manage the
ncreasing amount of information on a restricted screen
space

Most laptops and tablets have a Video Graphics Array
(VG A) connector that can be used to add a single screen. &
VG A connector increases the number of pixels available,
but limits users to one additional screen and to the number
of pixels on that screen that both the personal device and

Figure 97 The paragraph is expanded to show the column.

An additional click at this point will collapse the link back down to its original target shown in
Figure 94. Thus expanding a link follows a cycle going from one level of context to the next
higher until finally it returns to the original target. Each in-place expansion grows the size of the
link to fit the new context. The layout algorithm handles pushing other elements aside to make
room for the now larger link. The user can know that the cycle has restarted and the original
target is being shown because this is the only time a click on the link will shrink it to a smaller

size.

What to Expand to

The primary technical issue then is to actually know what the context of an element is. This is
where all the effort of creating an HCT pays off. All visual links are actually a reference to a
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node in the HCT. A node’s context is each of its ancestors in the tree. Therefore, a simple
upward traversal of the tree, starting at the node representing the target, finds the context of the
linked node. Every node along the way to the top is another stop along the expansion cycle.
While an upward traversal of the HCT is the heart of the actual algorithm, there are two

amendments to this technique that vastly improve the quality of expansions.

Insignificant expansions

Sometimes the tree may yield an expansion that is entirely insignificant. For example, Figure 98
and Figure 99 demonstrate the expansion of a line of text by one level, adding only the small
green area to the right of the line. The tree is built this way because a line above or below this
line juts out slightly farther into the margin. Thus the tree cuts to the edge of that farther line.
Finally, when the line shown in red is reached, the additional space on the edge is cropped away.
This yields a node that contains the body of the line, and the small bit of margin (shown in green)
on the right edge. This insignificant expansion results from the target of the visual link being on
the body of the line, and then expanding to the node that contains both the line body and the

small margin.

widgets would have a standard “hear and sav,” much like
fthe “look and feel™ standards i eraplucal vser intertaces
[1]. With a standardized wideet ser, developers can

Figure 98 The target of a link as indicated by the red outline.

widzets would have a standard “hear and sav,” much Like

[the “look and feel™ standards i eraphical uger interfaces|

[1U]. With a standardized widget set, developers can

Figure 99 The expansion of this target to its direct parent leads to the addition only of the green area on the right.
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Regardless of why the tree is built this way, this diminutive degree of expansion is clearly not
enough context to be helpful. Sometimes an expansion can be so slight that the user will not
notice it has occurred, causing them to feel that clicking on a link sometimes works and
sometimes does not. To address these insignificant expansions the algorithm defines a threshold
called the Interesting Area Ratio. The ratio of the areas of the next level of expansion and the
current must be greater than this ratio to be considered sufficiently interesting to include in the
cycle. Parents with an area ratio below this value are simply skipped. PixelJot uses 1.5 as

typical value of the Interesting Area Ratio.

Surging expansions

Opposite to the issue of some expansions being insignificant is that some are far too large. This
happens when a node’s parent jumps to a much larger size than the original node. Take, for
example, the document in Figure 100. The title block of a paper is a likely target for a link if a
user is keeping a bibliography. The parent of the title block is the entire body of the document.
Expanding a link that targets the title (shown by the red area in Figure 100) expands the scope to
the red area in Figure 101. Interactively this feels like the link is surging open, expanding from

the relatively small title to the huge area of the document without any warning.
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Ounry-by-cm;n: Oue«y-bya:ﬁﬂ\n:
Spoken Language Access to Large Lists Spoken Language Access to Large Lists

Figure 100 A target node to be expanded. Figure 101 The parent of that node is the body of the
entire document.

Introducing an intermediate step between these two expansions resolves this surging behavior.
Whenever a parent node’s area is much larger than its child’s area, a new mid-level expansion is
introduced between the two. This mid-level expansion displays an intermediate sized area
between the child and the parent. Figure 102 demonstrates the intermediate expansion that
would be placed between Figure 100 and Figure 101. The bounds of the intermediate are found
by moving each edge of the original expansion halfway to the edge of the larger. We have found
by experimentation that being about eight times bigger than ones child is a good definition of
“much larger”. It is about at an eight fold increase in size that an expansion begins to feel like it
is surging. This intermediate step makes the expansion process feel smoother and easier to track

what is happening.
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Figure 102 A mid-level expansion introduces an intermediate step between the expansions of Figure 100 and Figure
101.

Expansion results

After pruning out insignificant expansions and creating intermediate steps between larger ones,
the expansion cycle is complete. Figure 103 demonstrates an example of how the cycle of
expansions is ordered. The original target, the word “standard”, is shown with a red box at each

step. For each expansion step the previous expansion step is shown in green.
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widgets would have 4 hear and say,” much like
ETOOR and Teal - Statidards 1l grapniear use STaces

[10]. With a standardized w:iet sel, developers can

aramd a almed B ane A bl P

Our approach is to create a set of “speech widgets™ that
‘nJ ¥ . 2
hpplications, rather than natural language dialogs. Such|
idgets would have %*hear and say,” much like
the “look and feel™ stan in graphical user interfaces|

10]. With a standardized widget set, developers can|

usability anrme widgets. This effort can then be easily
leveraged across all uses of the widget.

Figure 103 The cycle of expansions for a link to the word “standard”.

Perceptual Scaling

Visual links, side by side, also cause some issues. In a page from a normal document, some bits
of text are larger than others to reflect their importance relative to their context. Titles are often
in very large font, where body text is much smaller. Removed from this context and inserted

into another document, their relative size no longer makes sense. For example, in Figure 104
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there is a link to the title and a link to other elements in the document. Since the title was typed
in large font compared to the document body font, it seems large and out of place retaining this

size in a link.

Tag: title
De-multiplexing Pixels: Wirelessly Expanding Portable
Screen Space

Tag: keyidea

SPICIE famework

Tag: keyidea

Spaces for Interactive Computing In Education (SPICIE):

Tag: Unimportant

de- multiplexing pivels I

Figure 104 Visual links to various objects. The title seems out of place next to the smaller links to document text.

In the context of the entire paper the size of the title makes sense, but when it is the target of a
link, the title appears far too large next to other elements. PixelJot introduces a technique for
resizing elements to an ideal perceptual size. This allows links to be scaled to a size that is
independent of the original context but instead is the “right” size for the content. The “right”
size for an element is the size at which it can be comfortably read and understood. We call this

the perceptual size. Figure 105 shows how we would expect the elements to be scaled.
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Tag: title

De-multiplexing Pixels: Wirelessly Expanding Portable
Screen Space

Tag: key idea
SPICIE framewoark

Tag: key idea
Spaces for Interactive Computing In Education (SPICIE):

Tag: Unimportant

de- wwlliplexing pixels

Figure 105 Visual links to various objects. The elements have been scaled to fit a comfortable perceptual size

We introduce four algorithms to rescale elements to their perceptual size. Each perceptual sizing
algorithm takes an image as an input and outputs the scale that the image should be adjusted by.
Typically this scale is usually less than or equal to 1 because few objects are included in papers
that are already too small to be recognized. Each of these four algorithms will use the elements
in Figure 106 to demonstrate their effectiveness. Figure 106 uses five different elements that we
expect to be common targets of links in documents. In order these elements are a section header,

a title, a paragraph, a line of text, and a single word.
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ABSTRACT

ScreenCrayons: Annotating Anything

Stroke/Region Association

Having classified the highlight strokes and computed our
continuity maps we now can compute the rectangular
region associated with each stroke. Our algorithm searches
in each of the four directions to find natural boundaries that
correspond to each ink stroke. Stroke/region association has
four cases: 1) area marks such as circles and scribbles, 2)
horizontal underline, 3) horizontal highlight and 4) margin
bars.

region associated with each stroke. Our algorithm searches
associated

Figure 106 A section header, title, paragraph, line, and word in their original size.

Please note that what is important is the relative size of elements to each other, not the absolute
size that you see in their result figures. Each algorithm may be correct by some constant amount,

and thus the absolute size of an element is irrelevant.
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Figure 107 A horizontal continuity map of two adjacent characters.
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The goal of the first two of these four perceptual sizing algorithms is to discover the dominant
width of a region of an image. Since we are focusing on scaling text, this dominant width is the
width of the pieces that make up text. In Figure 107 this width is about three. This is because
the right stalk of the ‘a’ tends to be about three pixels wide as well as the average width of its
loop. Even the diagonal of the ‘s’ is about three pixels wide if measured at an angle. Once this
dominant width is found, the image is scaled to put that width at about the width appropriate to
human eye acuity. Since that is about three pixels on most screen, the characters in Figure 107
wouldn’t need to be scaled at all. This is unsurprising, since they come from regular sized text.

However, the character found in Figure 108, each leg of which is about five pixels wide, would
be scaled by % thus placing it at about three pixels wide. This technique requires an efficient

method of finding the width of characters of text.

T [ O [ O | O | o [ [0 | O
HEEEEBEEE

DIEEEEEEEERGE
B[ [ [T [T [T [0 |G [0 [ [

W [ [ [ [ [ [ | | [ [
HEEEEBEEREEREEEE

EEEEEEEE
I E B EEE

FEEEEE R R EEE
HEEEEEEEEEEEE G EEE

HEEEEEEEE AR AR
[ [ [T [ [T o [0 O [ [ [ [ [ O o | o [ [ =3 [ =3

=== H|P|P|H (=3 [=0 =0 =0 I=0 =3 [=0 =0 T=0 =03 =3 =3 =} ’=3 =3 =]
I N|N|N|m EHEAEE RN R DB EEIEE

l?hSlSZDZlZZZS

Figure 108 An ‘A’ from an 18 point bold font.

Continuity histograms
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Histograms of continuity images are an efficient way gathering information about document
images. Each run in a continuity image represents an uninterrupted visually uniform strip.
Images of text have a great deal of breaks, and thus have, on average, many shorter runs. Images
of larger or bold text will have fewer but longer runs. A histogram of a continuity image counts
the number of runs of each possible length. Histograms of continuity images are very similar to
the frequency spectrum of the original image. If the image has frequent breaks, it will
experience high power in upper frequency areas, and therefore more histogram votes on the
shorter run lengths. Fewer breaks leads to longer runs and more histogram votes in the upper
range which is the same in frequency space more power in lower frequencies. Rather than using
the Fourier Transform, we use the histogram technique because we can manipulate the histogram

voting technique to improve results.

A histogram of a continuity image works by counting only the length of each run. For example,
if a histogram were being created from the image in Figure 107, the first values to be added
would be a 4, 6, 12, 5, 2, etc. When adding a run to a histogram, there are several options for

weighting the strength of its vote:

1. Single vote
2. Weighted vote

3. Square Root vote
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The first voting technique is to allow each run to count for only one vote. Using this voting
technique against the continuity image in Figure 107, we’d get the histogram shown in Figure

1009.

35

30

25

20

15 4

10 -

Figure 109 Histogram using the Single vote technique.

Note that the dominant three widths are: 3 (the width of the characters), 6, (the width between
the characters), and 2 (the narrow neck of the serifs). These results are mostly there, however,
since long runs contain many pixels, longer runs are under considered. Thus the lower end of the

histogram has numerous votes, where the few longer runs only have one or two.

Naturally the opposite technique is to count each run for the number of pixels it contains.

Figure 110 demonstrates the resultant histogram.
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Figure 110 Histogram using the Weighted vote technique.

Notice that the larger runs seem more fairly weighted. The dominant widths here are: 6, 3, and 7
(also a common width between characters). However this technique is also a folly because we
are interested mostly in the shorter runs, but this technique allows whitespace to dominate the
histogram. While the sample image, Figure 107, does not have much whitespace, imagine a
continuity image of a paragraph. The leading between lines of text are uninterrupted whitespace.
These long stretches of whitespace, all of which are exactly the same length, would combine

together to entirely dominate the more diffused vote of inter-text and intra-text runs.

This method, counting each run for the number of pixels it contains, over weights the long
uninteresting runs. Counting each run for only one value allows very short runs to dominate.

The best solution comes by counting each run for the square root of its length. This gives longer
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runs a heftier vote, but allows the shorter and more interesting runs to collectively carry

significant weight.
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Figure 111 Histogram using the Square Root vote technique.

Figure 111 shows that the resultant histogram. Using this voting technique the dominant votes
are: 3, 6, and 4 (the size of the wider necks of the serifs). The voting technique is fairer and

seems to favor finding the frequency of small text like areas.

Each of four perceptual sizing procedures uses a continuity histogram with the Square Root
voting technique to attempt to find the correct degree of scaling for an image. They work by
using continuity histogram to find dominant width of image detail (in this case the size of text),

and then scale the image so that this detail is some constant size.

Mean Run to Constant
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The Mean Run to Constant procedure calculates the continuity histogram of the image, then
finds the length of the mean run. The returned scale is some constant over this mean run width.
The desire is that the mean run length, according to the continuity histogram, will be the
dominant width of the text. Figure 112 shows each of the example clippings as sized by the
results of the Mean Run to Constant procedure. Comparing Figure 112 to Figure 106 shows that
Mean Run to Constant seems to favor the blocks of normal text (the paragraph, line, and word)

and has reduced the bolded text (the section header and title) to be much smaller.

ABSTRACT
ScreenCrayons: Annotating Anything

Stroke/Region Association

Having classified the highlight strokes and computed our
continuity maps we now can compute the rectangular
region associated with each stroke. Our algorithm searches
in each of the four directions to find natural boundaries that
correspond to each ink stroke. Stroke/region association has
four cases: 1) area marks such as circles and scribbles, 2)
horizontal underline, 3) horizontal highlight and 4) margin
bars.

region associated with each stroke. Our algorithm searches

associated

Figure 112 Results of the Mean Run to Constant perceptual sizing procedure.

By Rank

The By Rank procedure is very similar to the Mean Run to Constant. By Rank also uses the
histogram, but this time finds the top five run lengths with the most votes. The minimum of
these top run lengths is used as the denominator over some constant to serve as the scale. Figure
113 demonstrates that this procedure punishes the bold text even more strongly than Mean Run

to Constant, but its results are similar.
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ABSTRACT

SereenCrayons: Anisslating &myihing

Stroke/Region Association

Having classified the highlight strokes and computed our
continuity maps we now can compute the rectangular
region associated with each stroke. Our algorithm searches
in each of the four directions to find natural boundaries that
correspond to each ink stroke. Stroke/region association has
four cases: 1) area marks such as circles and scribbles, 2)
horizontal underline, 3) horizontal highlight and 4) margin
bars.

region associated with each stroke. Our algorithm searches

associated

Figure 113 Results of the By Rank perceptual sizing procedure.

Inter Runs

The Inter Runs procedure is the most complicated of the sizing algorithms. It is designed to
work specifically on blocks of text and tries to determine the width of space between characters.
Figure 114 and Figure 115 reveal the horizontal continuity map of some bold and non-bold
characters. Notice that the bold characters seem to have a width of about five pixels where the
non-bold characters have a width of about three. Both the Mean Run to Constant and the By
Rank procedures worked by attempting to determine these typical character widths and scale to
compensate for them. However, both of these algorithms have failed with bold characters. This
is because in readability what matters is contrast. While bold characters are wider, the spacing
between characters is nearly the same for bold text as normal text. Thus scaling bold text by the
width of its characters, rather than the width of its whitespace, makes the resultant gaps too small

to distinguish a difference between the letters. Look back at Figure 113 and Figure 112. Notice
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that the reason the title is hard to read isn’t that the sticks, loops, and curves of the characters are
too small, but that the holes within characters and the gaps between them are too small to

separate those sticks, loops, and curves.

Instead of trying to determine the typical width of a character, the Inter Runs procedure works by
finding the width of space between characters. Examination of Figure 114 shows there to be on
average ten pixels between this bold text, and Figure 115 shows about seven pixels between the
normal text. Thus the bold text would be scaled down slightly relative to the normal text. But
not to the extent that Mean Run to Constant or By Rank do. Inter Runs also works by using the
continuity histogram, but only counts background colored runs that come between non-

background colored runs.
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Figure 114 Horizontal continuity map of bold letters. Close up of the word “Abstract” shown in figure Figure 106.
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Figure 115 Horizontal continuity map of normal font letters. Close up of the word “associated” shown in Figure
106.

As seen in Figure 116, the Inter Runs procedure works more reliably with the bold section
header and title font. However, sometimes this algorithm can be tricked by non-text only

elements such as charts since it confuses space between text with space between chart borders.

ABSTRACT

ScreenCrayons: Annotating Anything

Stroke/Region Association

Having classified the highlight strokes and computed our
continuity maps we now can compute the rectangular
region associated with each stroke. Our algorithm searches
in each of the four directions to find natural boundaries that
correspond to each ink stroke. Stroke/region association has
four cases: 1) area marks such as circles and scribbles, 2)
horizontal underline, 3) honizontal highlight and 4) margin
bars.

region associated with each stroke. Our algonthm searches

associated

Figure 116 Results of the Inter Runs perceptual sizing procedure.
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Ensemble

The final sizing procedure attempts to merge the advantages of each of these previous perceptual
sizing procedures by using a weighted average of the outputs of each. This ensemble procedure
is what PixelJot uses to decide the scale applied to visual links, and generated the results we saw
in Figure 105. There is a slight bias towards not scaling the results at all which allows for
attention grabbing elements such as the title to retain some portion of their visual salience in

links. See results in Figure 117.

ABSTRACT
ScreenCrayons: Annotating Anything

Stroke/Region Association

Having classified the highlight strokes and computed our
continuity maps we now can compute the rectangular
region associated with each stroke. Our algorithm searches
in each of the four directions to find natural boundaries that
correspond to each 1nk stroke. Stroke/region association has
four cases: 1) area marks such as circles and scribbles, 2)
horizontal underline, 3) horizontal highlight and 4) margin
bars.

region associated with each stroke. Our algorithm searches

associated

Figure 117 Results of the Ensemble perceptual sizing procedure.

SYNOPSIS PAGES

Notes are only valuable if they can be easily accessed at a later date. PixelJot introduces a series
of synopsis pages for reviewing documents and notes. There are various kinds of synopses
possible including index, summary, and search pages. Each of these pages is created on-the-fly

by examining the notes, tags, and highlights inside a document and compiling visual links to the
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results into a custom built HCT. An index and search may be conducted on a single document, a

folder of documents, or the entire digital notebook.

Index

An index is created by examining all of the tags in a given scope (document, folder or notebook)
and sorting them in alphabetical order. Each tag is then inserted via a visual link into a custom
built HCT. For example, Figure 118 demonstrates an index built from the document shown in
Figure 119. If a user is interested in finding a tag based on a certain topic, they need only create

the index and find the section most related to their desired topic.

E PixelJot
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@ Summary AUTHORS
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KEY IDEA
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TTLE

Screen Space
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Figure 118 An index built from the document in Figure 119.

De-multiplexing Pixels: Wirelessly Expanding Portable
Screen Space

Richard B. Arthur, Mitchell K. Harris, Dan R. Olsen, Jr.
Brigham Young University
3361 TMCB, Provo, UT, 84602-6576, USA
startether@startether. com, heneryvillei@gmail. com, olsen(@wes.byu.edu

ABSTRACT

This paper introduces the SPICIE framework for annexing
display servers and sharing content on available screens.
SPICIE allows a user carrying a portable device, such as a
laptop or tablet, to annex additional screen space for her
device. She then selects windows on her device to share
with the annexed screens. In particular, overlapping
windows on her personal device may be spread out (de-
multiplexed) so that they do nol overlap on the annexed
sereens, SPICIE protects user privacy by ensuring that only
pixels generated by explicitly shared windows are
transmitted (o the display server. Multiple users may also
simultaneously annex the screens to share content,

Author Keywords
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ACM Classification Keywords
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INTRODUCTION

People are increasingly nomadic, and must manage large
quantities of information. In particular, pecple need their
personal information with them wherever they are. An
effective technique for keeping information available is to
carry that information with the user on a portable computer
such as a laptop or tablet. These persomal devices have
portable form factors, but have limited screen space.
Consequently, users are challenged to manage the
mcreasing amount of information on & restricted screen
space.

Most laptops and tablets have a Video Graphics Array
{VGA) connector that can be used to add a single screen. A
V(rA connector increases the number of pixels available,
but limits users to one additional screen and to the number
of pixels on that screen that both the personal device and
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screen support.

Desktop machines, however, can support extra graphics
hardware, allowing users to greatly increase the screen
space available for applications. Unfortunately, desktop
machines are not very mobile, so personal devices are still
limited to a single additional screen.

[#sah inat: mosing my asskeop arouna . Taks dorusrl |

Instead of having a single sereen limit, a user should be able
to add screens to meet her need for space. This paper
ntreduces Spaces for Interactive Computing In Education
(SPICIE): a wireless screen annexation protocol that allows
users to utilize multiple screens via a personal device, thus
overcoming the cable limitations. SPICIE [acilitates de-
multiplexing pivels, which allows users to spread out
windows from their personal device to the attached screens.
Spreading these windows provides users context while
worlking in applications |1. 2. 5, 9, 15]. In addition, the
SPICIE protecel supports multiple concurrent personal
devices, so several users can simultaneously collaborate on
the same screen space, as shown in Figure 1.

Figure 1—Collaborative group meeting. The windows and
their source computer are outlined in the same color.

User Scenarios

With a trusted portable computer, most application
interaction is likely to happen on the personal device (i.e.
primary screen). Additional screens provide context for the

Figure 119 A document with various tags, highlights, and comments.

Search
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While an index displays all of the tags with a given title, a note taker can also search for tags
with a given string using the search bar. A search can be scoped to the document, folder, or
notebook. A search results in a page with a visual link to every tag that bears the given string.
The result of a search for the string “key idea” on the document in Figure 119 is shown in Figure

120.

B pixelJot

r | demultiplex

— | Dummy Paper

KEY IDEA

L{] A very important project

P Al Spaces for Interactive Computing In Education
(SFPICIE):

SPICIE framework

Figure 120 A search for key idea has yielded one result in the document.

Summaries

Indexes place tags in alphabetical order and searches place them in order of discovery. Neither
of these synopses are conducive to summarizing documents. Summary pages present visual
links to comments, tags, and highlights in the order that they appear in the document. For
humans, the proper ordering of a document is easy. Figure 121 how we would order the tags,
highlights, and comments of Figure 119. Figure 122 provides the corresponding summary that

has listed the annotation in the correct order.
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ABSTRACT

This paper introduces the SPICIE framework for annexing
display servers and sharing content ol creens.
SPICIE allows a user carrying a portab Lh as a
laplop or tablet, 1o annex additional s ~ [or her
device. She then selects windows on share
with the annexed screens. In particular, overlapping

windows on her personal device may be spread out (de-
mulliplexed) so that they do nol overlap on the annexed
screens. SPICIE protects user privacy by ensuring that only
pixels generated by explicitly shared windows are
{fransmitted to the display server. Multiple users may also
simultaneously annex the screens to share content
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INTRODUCTION

People are increasingly nomadic, and must manage large
quantities of mformation. In particular, people need their
personal information with them wherever they are. An
effective technique for keeping information available is to
carry that information with the user on a portable computer
such as a laptop or tablet. These persomal devices have
portable form factors, but have limited screen space.

Consequently, users are challengechm e the
mcredsing amount of information on sCTeen
space. Py

Most laptops and tablets have a Vid Array

{VGA) conneclor that can be used 0 add a single screen. A
V(GA connector increases the number of pixels available,
but limits users to one additional screen and to the number
of pixels on that screen that both the personal device and
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screen support.

Desktop machines, however, can support extra graphics
hardware, all to greatly mcrease the screen
space availah cations. Unfortunately, desktop
machines are ile, so personal devices are still
limited to a si ~ al screen.
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Instead of having a single screen thould be able
to add screens to meet her nef gk This paper
intreduces Spaces for Interaciiy In Education
(SPICIE): a wireless screen annexation protocol that allows
users to utilize multiple screens via a personal device, thus
overcoming the cab pebiseiey:  SPICIE [acililates de-
multiplexing  pixels, bvs users to spread out
windows from their be to the attached screens
Spreading these wi o2 L uscre context while
working, in applicatidMe I o o 2, 15]. In addition, the
SPICIE protocol supports multiple concurrent personal
devices, so several users can simultaneously collaborate on
the same screen space, as shown in Figure 1.

Figure 1—Collaborative group meeting. The windows and
their source computer are outlined in the same color.

User Scenarios

With a trusted portable computer, most application
interaction is likely to happen on the personal device (i.e.
primary screen). Additional screens provide context for the

Figure 121 The expected flow order of the tags, highlights, and comments in Figure 119,
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Figure 122 A summary of the document shown in Figure 119.

While it is easy for a human to know the proper flow order of a document, it is much harder for
an algorithm to do so. The primary challenge in creating summaries is discovering what the
relative order of each element is. Remember that the only resources available are the original
image and the HCT. The naive approach, sorting elements by their proximity to the top of the
page, fails with multiple column papers. Clearly the internal structure matters in a way that a top
to bottom or left to right approach cannot capture. All elements in the left column should be
listed before those in the right. All elements in the title section should come before those in the

body of the document.

PixelJot attempts to infer the order of elements by using the HCT. By conducting a standard

depth first ordering of the HCT, each element can be compared to its neighbor. What makes this
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work is that each node must visit its children in an order that follows the reading order of the
document. Let’s take a look at a simple block diagram of a document as an example. Figure 123
represents a block diagram of is simple document. This document has two columns, four

paragraphs, and a title section.

Figure 123 A block diagram of a simple document.

Figure 124 shows the HCT that would result from segmenting this block diagram. The title and
the document body are first divided. Then the body is broken into columns then paragraphs. Of
course the paragraphs would be divided into lines then characters, but for simplicity we only

show to the paragraph level. Again, a real HCT would not be labeled, but for clarity Figure 124

has been labeled at each level.
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Figure 124 The HCT of the document in Figure 123.

An in-order depth first ordering of this tree would number the elements as depicted by the gray

boxes. Resulting in the final paragraphs being numbered as in Figure 125.
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Figure 125 Number of paragraphs due to an in-order depth first numbering.

In Latin based languages documents are read from top to bottom, left to right. Thus grid nodes
visit their children from top to bottom major order, left to right minor. This causes the grid node
separating the two columns to visit the left column before the right, and the grid node separating

paragraphs to order them from top to bottom.

We are fortunate that English is so consistent about its top to bottom, left to right reading order.
Recall that the HCT is unlabeled, and thus we don’t know which nodes actually represent a
column break or a paragraph break. If we were to ever encounter a language that orders lines of
text in a paragraph from top to bottom, but orders paragraphs from bottom of the page to the top,
we would be unable to correctly order the HCT because we couldn’t tell which nodes represent

lines and which represent paragraphs.

Crop nodes visit each margin first and the center last. In-order depth first traversal of the HCT

succeeds in ordering elements in standard single or multi-columned research papers. Examine
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Figure 121 and Figure 122 again, and observe that highlights and tags are ordered exactly how

we would expect them.
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Conclusion

PixelJot resolves the tradeoff between universality and content awareness. We take it as self-
evident that our solution is universal because the virtual printer technique can print anything into
images. In the worst case scenario a screen shot could be used, meaning that anything
displayable on a computer is also capturable and importable. We assert that our solution is

content aware, and that content awareness is useful.

Content Awareness

PixelJot segments document images into a hierarchical context tree. This HCT divides the
document into its core elements (the leaves of the tree), and stores information on how each
element relates to another (the hierarchical organization of the tree). This HCT makes PixelJot

content aware.

Usefulness of Content Awareness

Now let us examine utility. To demonstrate that being content aware is significant, we have
demonstrated several tools that utilize the HCT. These tools then are a proof of utility. If they
are helpful in annotating tasks, then they justify our contributions as significant. Selection of
document elements, expanding links to view their context, reflowing documents when elements

are inserted or resized, and discovering the visual order of documents for summary creation are
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all examples of tools that employ the hierarchical context tree. We believe that these tools are

useful for annotation tasks and justify the contribution of an HCT as significant.

We have introduced PixelJot, a universal and content aware annotator. PixelJot universally
imports all document as images, uses perceptual cues to infer a hierarchical context tree, and
uses this tree to offer many tools for annotating documents. We have introduced a limited set of
tools to demonstrate the usability and feasibility of the HCT. There are many more operations or
tools that could be invented based upon an HCT that would add even more value to annotation
tasks. PixelJot, as a working prototype of a content aware annotator, is a useful and a powerful

tool in annotating documents.
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FUTURE WORK

Our primary contribution has been to introduce a method for making a universal and content
aware annotator. The HCT is a new concept for annotators, and we only explored a limited set
of tools that could be created based on the information it gives. Future work may include
development of additional tools that use an HCT in annotation. The algorithm for generating the
HCT we developed has been fine tuned for academic research papers. While we believe that the
notion of an HCT can generalize effectively to all documents (including book pages, web pages,
forms, code print outs, etc.) adjustments to our algorithm would be necessary. It may be true that
it is best to develop an HCT generating algorithm for each different document type, and then

develop a heuristic to determine which algorithm to use against arbitrary input.
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